Page last updated: 2024-08-25

clarithromycin and bortezomib

clarithromycin has been researched along with bortezomib in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (16.67)29.6817
2010's9 (75.00)24.3611
2020's1 (8.33)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
McKenna, KE; Morris, TC; Ramadan, KM1
Inazu, M; Itoh, M; Kohno, N; Komatsu, S; Miyazawa, K; Moriya, S; Naito, M; Takase, A; Tomoda, A1
Abe, A; Che, XF; Gotoh, A; Inazu, M; Kawaguchi, T; Komatsu, S; Miyazawa, K; Moriya, S; Tomoda, A1
Che, XF; Kohno, N; Komatsu, S; Miyazawa, K; Moriya, S; Yokoyama, T1
Che, XF; Gotoh, A; Hiramoto, M; Hirota, A; Inazu, M; Kawai, Y; Kokuba, H; Komatsu, S; Miyazawa, K; Moriya, S; Yamasaki, K1
Hoshino, K; Imai, G; Kojima, M; Ooi, A; Takemori, N1
Abildgaard, N; Andersen, CL; Do, T; Frederiksen, H; Frølund, UC; Gregersen, H; Jarden, M; Klausen, TW; Kristensen, IB; Nielsen, LK; Vangsted, AJ1
Aizawa, S; Hino, H; Hiramoto, M; Kazama, H; Miyazawa, K; Moriya, S; Takano, N1

Reviews

1 review(s) available for clarithromycin and bortezomib

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Trials

1 trial(s) available for clarithromycin and bortezomib

ArticleYear
Clarithromycin added to bortezomib-cyclophosphamide-dexamethasone impairs health-related quality of life in multiple myeloma patients.
    European journal of haematology, 2019, Volume: 102, Issue:1

    Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Bortezomib; Clarithromycin; Clinical Protocols; Cyclophosphamide; Denmark; Dexamethasone; Female; Humans; Induction Chemotherapy; Male; Middle Aged; Multiple Myeloma; Neoplasm Staging; Quality of Life; Treatment Outcome

2019

Other Studies

10 other study(ies) available for clarithromycin and bortezomib

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Clinical response of cutaneous squamous-cell carcinoma to bortezomib given for myeloma.
    The Lancet. Oncology, 2006, Volume: 7, Issue:11

    Topics: Anti-Inflammatory Agents; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Carcinoma, Squamous Cell; Clarithromycin; Dexamethasone; Diphosphonates; Glomerulonephritis; Humans; Idarubicin; Imidazoles; Immunosuppressive Agents; Male; Melphalan; Middle Aged; Multiple Myeloma; Nephrotic Syndrome; Pamidronate; Protein Synthesis Inhibitors; Pyrazines; Skin Neoplasms; Thalidomide; Zoledronic Acid

2006
Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells.
    International journal of oncology, 2012, Volume: 40, Issue:4

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Boronic Acids; Bortezomib; Breast Neoplasms; Cell Line, Tumor; Clarithromycin; Cytotoxicity, Immunologic; Drug Synergism; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Female; Gene Expression; Humans; Pyrazines; Transcription Factor CHOP

2012
Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells.
    International journal of oncology, 2013, Volume: 42, Issue:5

    Topics: Animals; Apoptosis; Autophagy; Azithromycin; Boronic Acids; Bortezomib; Cell Line, Tumor; Clarithromycin; Endoplasmic Reticulum Stress; Erythromycin; Fibroblasts; Gene Expression Regulation, Neoplastic; Humans; Macrolides; Mice; Multiple Myeloma; Pyrazines; Transcription Factor CHOP

2013
Combined treatment with SAHA, bortezomib, and clarithromycin for concomitant targeting of aggresome formation and intracellular proteolytic pathways enhances ER stress-mediated cell death in breast cancer cells.
    Biochemical and biophysical research communications, 2013, Jul-19, Volume: 437, Issue:1

    Topics: Anilides; Animals; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Breast Neoplasms; Cell Death; Cell Line, Tumor; Cell Proliferation; Clarithromycin; Drug Screening Assays, Antitumor; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation, Neoplastic; Humans; Hydroxamic Acids; Inclusion Bodies; Intracellular Space; Mice; Proteolysis; Pyrazines; Transcription Factor CHOP; Vorinostat

2013
Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress‑mediated cell death in multiple myeloma cells.
    International journal of oncology, 2015, Volume: 46, Issue:2

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Boronic Acids; Bortezomib; Cell Line, Tumor; Clarithromycin; Drug Synergism; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Histone Deacetylase 6; Histone Deacetylases; Humans; Hydroxamic Acids; Mice; Multiple Myeloma; Proteasome Endopeptidase Complex; Pyrazines; Vorinostat

2015
A novel combination of bortezomib, lenalidomide, and clarithromycin produced stringent complete response in refractory multiple myeloma complicated with diabetes mellitus - clinical significance and possible mechanisms: a case report.
    Journal of medical case reports, 2018, Feb-18, Volume: 12, Issue:1

    Topics: Aged; Anti-Bacterial Agents; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Bortezomib; Clarithromycin; Diabetes Mellitus; Female; Humans; Immunologic Factors; Lenalidomide; Multiple Myeloma; Thalidomide; Treatment Outcome

2018
Clarithromycin overcomes stromal cell-mediated drug resistance against proteasome inhibitors in myeloma cells via autophagy flux blockage leading to high NOXA expression.
    PloS one, 2023, Volume: 18, Issue:12

    Topics: Apoptosis; Autophagy; Bortezomib; Cell Line, Tumor; Clarithromycin; Humans; Multiple Myeloma; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Stromal Cells

2023