citralva and hydroxyisohexyl-3-cyclohexene-carboxaldehyde

citralva has been researched along with hydroxyisohexyl-3-cyclohexene-carboxaldehyde* in 4 studies

Other Studies

4 other study(ies) available for citralva and hydroxyisohexyl-3-cyclohexene-carboxaldehyde

ArticleYear
An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.
    Schizophrenia research, 2012, Volume: 138, Issue:2-3

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants.. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator.. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy.. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome.

    Topics: Adolescent; Aldehydes; Cell Communication; Cyclic AMP; Cyclohexenes; Female; Humans; Male; Nitriles; Odorants; Olfaction Disorders; Olfactory Perception; Psychotic Disorders; Risk; Schizophrenia; Sensory Thresholds; Signal Transduction; Young Adult

2012
An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.
    The American journal of psychiatry, 2009, Volume: 166, Issue:2

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade.. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase.. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use.. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

    Topics: Adult; Aldehydes; Cyclic AMP; Cyclohexenes; Female; Genetic Predisposition to Disease; Humans; Intracellular Signaling Peptides and Proteins; Male; Middle Aged; Nitriles; Olfaction Disorders; Psychiatric Status Rating Scales; Reference Values; Schizophrenia; Sensory Thresholds; Signal Transduction; Smell

2009
Regulation of cutaneous allergic reaction by odorant inhalation.
    The Journal of investigative dermatology, 2000, Volume: 114, Issue:3

    Olfactory stimuli modulate emotional conditions and the whole body immune system. Effects of odorant inhalation on cutaneous immune reaction were examined. Contact hypersensitivity to 2,4, 6-trinitrochlorobenzene was elicited in C57BL/6 mice. The reaction was suppressed at both the induction and elicitation phases by exposure to an odorant, citralva. Topical application of citralva or lyral/lilial did not affect the reaction. The suppressive effect of citralva was more potent than that of another odorant, lyral/lilial. Citralva decreased the number of epidermal Langerhans cells, whereas lyral/lilial had a weak effect. Citralva but not lyral/lilial induced plasma corticosterone. Glucocorticoid receptor antagonist abrogated the suppressive effect of citralva on contact hypersensitivity. Serum interleukin-12 was downregulated by exposure to citralva or lyral/lilial. These data demonstrate that olfactory stimuli regulate the cutaneous immune system.

    Topics: Administration, Inhalation; Administration, Topical; Aldehydes; Allergens; Animals; Cyclohexenes; Cytokines; Dermatitis, Contact; Female; Interleukin-10; Interleukin-12; Langerhans Cells; Mice; Mice, Inbred C57BL; Nitriles; Odorants; Perfume; Receptors, Odorant

2000
Odorants selectively activate distinct G protein subtypes in olfactory cilia.
    The Journal of biological chemistry, 1998, Jul-03, Volume: 273, Issue:27

    Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.

    Topics: Acetates; Aldehydes; Amino Acid Sequence; Animals; Benzaldehydes; Cilia; Cyclic AMP; Cyclohexenes; Cyclopentanes; Eugenol; GTP-Binding Proteins; Inositol 1,4,5-Trisphosphate; Molecular Sequence Data; Nitriles; Odorants; Olfactory Mucosa; Oxylipins; Photoaffinity Labels; Rats; Rats, Sprague-Dawley; Signal Transduction

1998