citalopram has been researched along with hydroxyzine in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 6 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bergström, F; Giordanetto, F; Rehngren, M; Tunek, A; Wan, H | 1 |
Ahman, M; Holmén, AG; Wan, H | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Atzpodien, EA; Csato, M; Doessegger, L; Fischer, H; Lenz, B; Schmitt, G; Singer, T | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Delafontaine, P; Deo, R; Doerfler, RM; Fink, JC; Fischer, MJ; Jaar, BG; Kramlik, S; Makos, GK; Navaneethan, S; Ojo, A; Slaven, A; Snitker, S; Soliman, EZ; St Peter, WL; Weir, MR; Zhan, M | 1 |
1 review(s) available for citalopram and hydroxyzine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
8 other study(ies) available for citalopram and hydroxyzine
Article | Year |
---|---|
High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery.
Topics: Animals; Brain; Central Nervous System Agents; Dialysis; Hydrophobic and Hydrophilic Interactions; In Vitro Techniques; Mice; Models, Statistical; Protein Binding; Quantitative Structure-Activity Relationship; Rats | 2007 |
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
In silico assay for assessing phospholipidosis potential of small druglike molecules: training, validation, and refinement using several data sets.
Topics: Animals; Cattle; Cells, Cultured; Computer Simulation; Cornea; Drug-Related Side Effects and Adverse Reactions; Fibroblasts; Lipidoses; Lysosomal Storage Diseases; Models, Molecular; Pharmaceutical Preparations; Phospholipids; Structure-Activity Relationship; Thermodynamics | 2012 |
Association of QT-Prolonging Medication Use in CKD with Electrocardiographic Manifestations.
Topics: Aged; Amiodarone; Anti-Arrhythmia Agents; Antidepressive Agents, Second-Generation; Citalopram; Diabetes Complications; Diuretics; Electrocardiography; Female; Fluoxetine; Furosemide; Heart; Heart Rate; Histamine H1 Antagonists; Humans; Hydroxyzine; Male; Metolazone; Middle Aged; Proton Pump Inhibitors; Renal Insufficiency, Chronic; Venlafaxine Hydrochloride | 2017 |