cisapride and desipramine

cisapride has been researched along with desipramine in 14 studies

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (7.14)18.2507
2000's6 (42.86)29.6817
2010's7 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Keserü, GM1
Nagashima, R; Nishikawa, T; Tobita, M1
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Jia, L; Sun, H1
Giordanetto, F; Leach, AG; Zachariae, U1
Campillo, NE; Guerra, A; Páez, JA1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Sen, S; Sinha, N1
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A1
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Frölich, D; Göthert, M; Likungu, J; Molderings, GJ1

Other Studies

14 other study(ies) available for cisapride and desipramine

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2003
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Support vector machines classification of hERG liabilities based on atom types.
    Bioorganic & medicinal chemistry, 2008, Jun-01, Volume: 16, Issue:11

    Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve

2008
Side chain flexibilities in the human ether-a-go-go related gene potassium channel (hERG) together with matched-pair binding studies suggest a new binding mode for channel blockers.
    Journal of medicinal chemistry, 2009, Jul-23, Volume: 52, Issue:14

    Topics: Binding Sites; Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Ligands; Models, Molecular; Potassium Channel Blockers; Protein Binding; Protein Conformation

2009
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
    Cardiovascular research, 2011, Jul-01, Volume: 91, Issue:1

    Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection

2011
QSAR-based permeability model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2011, Apr-15, Volume: 19, Issue:8

    Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2011
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012
Inhibition of noradrenaline release via presynaptic 5-HT1D alpha receptors in human atrium.
    Naunyn-Schmiedeberg's archives of pharmacology, 1996, Volume: 353, Issue:3

    Topics: 5-Methoxytryptamine; 8-Hydroxy-2-(di-n-propylamino)tetralin; Adrenergic Uptake Inhibitors; Adult; Aged; Anti-Inflammatory Agents, Non-Steroidal; Cisapride; Corticosterone; Desipramine; Heart Atria; Humans; Indoles; Ketanserin; Male; Middle Aged; Norepinephrine; Oxadiazoles; Piperidines; Receptors, Presynaptic; Receptors, Serotonin; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sumatriptan; Tritium; Tryptamines

1996