cinnamylamine has been researched along with cinnamaldehyde* in 1 studies
1 other study(ies) available for cinnamylamine and cinnamaldehyde
Article | Year |
---|---|
Inhibition and inactivation of monoamine oxidase by 3-amino-1-phenyl-prop-1-enes.
We have previously shown that E-3-amino-1-phenyl-prop-1-ene (E-cinnamylamine) is readily oxidised by monoamine oxidase (MAO) type B from either rat or bovine liver (Williams et al. (1988), Biochem. J. 256, 411-415) in each case producing a non-linear progress curve which was attributed to inhibition by the reaction product E-cinnamaldehyde. We have now found that although this aldehyde inhibits MAO B competitively (Ki 0.017 mM) this cannot account for the inhibitory process, since during a 60 min incubation with the substrate (0.5 mM; Km, 0.074 mM) more than 95% inhibition of MAO B was observed and the concentration of aldehyde had reached approx. 0.025 mM. Inhibition was relieved either by dialysis or dilution of inhibited samples. The activity of MAO A from rat liver was largely unaffected by E-cinnamylamine. Oxidation of N-methyl-E-cinnamylamine and its Z-isomer by MAO B produced progress curves similar to that obtained with the primary amine, but in these cases inhibition was not reversed either by dilution or dialysis. Partition ratios for the pair of N-methyl isomers with bovine MAO B were calculated to be 1640 (E-isomer) and 1430 (Z-isomer). The time-dependent inhibition process for all three amines obeyed pseudo-first-order kinetics. A tritiated form of N-methyl-E-cinnamylamine, incubated with MAO B from bovine liver, resulted in incorporation of radioactivity into the enzyme. This labelling was stable to dialysis and to SDS-PAGE. Topics: Acrolein; Animals; Benzaldehydes; Benzylamines; Binding Sites; Cattle; Liver; Methylamines; Mitochondria, Liver; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Propylamines; Rats; Stereoisomerism | 1992 |