cinnamoylcocaine has been researched along with hygrine* in 3 studies
1 review(s) available for cinnamoylcocaine and hygrine
Article | Year |
---|---|
Biological activity of the alkaloids of Erythroxylum coca and Erythroxylum novogranatense.
The cultivated Erythroxylum varieties E. coca var. coca, E. coca var. ipadu, E. novogranatense var. novogranatense and E. novogranatense var. truxillense contain 18 alkaloids, identified so far, belonging to the tropanes, pyrrolidines and pyridines, with cocaine as the main alkaloid. The biological activity of the following alkaloids has been reported in the literature: cocaine, cinnamoylcocaine, benzoylecgonine, methylecgonine, pseudotropine, benzoyltropine, tropacocaine, alpha- and beta-truxilline, hygrine, cuscohygrine and nicotine. The biological activity of cocaine and nicotine is not reviewed here, because it is discussed elsewhere in the literature. Hardly anything is known about the biological activity of the other alkaloids present in the four varieties mentioned. The biosynthesis of the coca alkaloids has been outlined. Topics: Alkaloids; Anesthetics; Animals; Cats; Chemical Phenomena; Chemistry; Coca; Cocaine; Drug and Narcotic Control; Mice; Plants, Medicinal; Pyrrolidines; Rabbits; Rats; Tropanes; United Nations | 1984 |
2 other study(ies) available for cinnamoylcocaine and hygrine
Article | Year |
---|---|
Behaviour of hygrine and cuscohygrine in illicit cocaine production establishes their use as markers for chewing coca leaves in contrast with cocaine abuse.
Hygrine (HYG) and cuscohygrine (CUS) are natural alkaloids of coca leaves but are not found in illicit cocaine seizures. Therefore, they were proposed as markers for coca chewing in contrast to cocaine abuse in urine and hair testing. In order to examine at which step of the illegal cocaine production these compounds are lost, coca leaves were processed according to an authentic procedure by extraction with lime and kerosene, re-extraction with sulphuric acid, and precipitation of coca paste with ammonia. Non-extracted and extracted coca leaves, acidic extract and coca paste were analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for cocaine, ecgonine methyl ester (EME), cinnamoylcocaine (CIN), HYG, and CUS. It follows from the results that under these conditions, HYG and CUS are extracted only to a minor extent by kerosene and are not precipitated from the acidic re-extract in the coca paste. Due to this behaviour in illegal cocaine production, they fulfil the conditions as markers for coca chewing in an optimal way. However, for unambiguous discrimination between coca chewing and cocaine abuse in human samples, additional markers of manufactured cocaine are required. Copyright © 2016 John Wiley & Sons, Ltd. Topics: Acetone; Chromatography, Liquid; Coca; Cocaine; Cocaine-Related Disorders; Gas Chromatography-Mass Spectrometry; Humans; Illicit Drugs; Mastication; Plant Leaves; Pyrrolidines | 2017 |
Possibilities for discrimination between chewing of coca leaves and abuse of cocaine by hair analysis including hygrine, cuscohygrine, cinnamoylcocaine and cocaine metabolite/cocaine ratios.
Contrary to the illegal use of any form of manufactured cocaine, chewing of coca leaves and drinking of coca tea are allowed and are very common and socially integrated in several South American countries. Because of this different legal state, an analytical method for discrimination between use of coca leaves and abuse of processed cocaine preparations is required. In this study, the applicability of hair analysis for this purpose was examined. Hair samples from 26 Argentinean coca chewers and 22 German cocaine users were analysed for cocaine (COC), norcocaine (NC), benzoylecgonine (BE), ecgonine methyl ester (EME), cocaethylene (CE), cinnamoylcocaine (CIN), tropacocaine (TRO), cuscohygrine (CUS) and hygrine (HYG) by hydrophilic interaction liquid chromatography (HILIC) in combination with triplequad mass spectrometry (MS/MS) and hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS). The following concentrations (range, median, ng/mg) were determined in hair of the coca chewers: COC 0.085-75.5, 17.0; NC 0.03-1.15, 0.12; BE 0.046-35.5, 6.1; EME 0.014-6.0, 0.66; CE 0.00-13.8, 0.38; CIN 0.005-16.8, 0.79; TRO 0.02-0.16, 0.023; CUS 0.026-26.7, 0.31. In lack of a reference substance, only qualitative data were obtained for HYG, and two metabolites of CUS were detected which were not found in hair of the cocaine users. For interpretation, the concentrations of the metabolites and of the coca alkaloids in relation to cocaine were statistically compared between coca chewers and cocaine users. By analysis of variance (ANOVA) significant differences were found for all analytes (α = 0.000 to 0.030) with the exception of TRO (α = 0.218). The ratios CUS/COC, CIN/COC and EME/COC appeared to be the most suitable criteria for discrimination between both groups with the means and medians 5-fold to 10-fold higher for coca chewers and a low overlap of the ranges between both groups. The same was qualitatively found for HYG. However, these criteria cannot exclude cocaine use in addition to coca chewing. In this regard screening for typical cutting agents can be helpful and led to the detection of levamisole (21×), lidocaine (6×) and paracetamol (3×) in the 22 samples from German cocaine users, whereas no levamisole, lidocaine (3×) and paracetamol (1×) were found in hair from the Argentinean coca chewers. These criteria have to be confirmed for South American cocaine consumers including smokers of coca paste and may be different because of different composition of the Topics: Acetaminophen; Acetone; Adolescent; Adult; Aged; Chromatography, Liquid; Coca; Cocaine; Cocaine-Related Disorders; Drug and Narcotic Control; Drug Contamination; Female; Forensic Toxicology; Hair; Humans; Levamisole; Lidocaine; Male; Mass Spectrometry; Mastication; Middle Aged; Plant Leaves; Pyrrolidines; Tea | 2015 |