cilostazol and glyburide

cilostazol has been researched along with glyburide in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (62.50)29.6817
2010's3 (37.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Clancy, JP; Cobb, BR; Fan, L; Kovacs, TE; Sorscher, EJ1
Ikomi, F; Nakamura, K; Ohhashi, T1
Cheng, KS; Li, CL; Lin, MW; Ting, WH; Wu, AZ; Wu, SN1

Reviews

1 review(s) available for cilostazol and glyburide

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for cilostazol and glyburide

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
Adenosine receptors and phosphodiesterase inhibitors stimulate Cl- secretion in Calu-3 cells.
    American journal of respiratory cell and molecular biology, 2003, Volume: 29, Issue:3 Pt 1

    Topics: Adenosine Deaminase; Anions; Cell Line; Chlorine; Cilostazol; Colforsin; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophysiology; Epithelium; Glyburide; Humans; Hypoglycemic Agents; Milrinone; Mutation; Papaverine; Phosphodiesterase Inhibitors; Piperazines; Purines; Receptors, Purinergic P1; Rolipram; Sildenafil Citrate; Sulfones; Tetrazoles; Time Factors

2003
Cilostazol, an inhibitor of type 3 phosphodiesterase, produces endothelium-independent vasodilation in pressurized rabbit cerebral penetrating arterioles.
    Journal of vascular research, 2006, Volume: 43, Issue:1

    Topics: 3',5'-Cyclic-AMP Phosphodiesterases; Animals; Arterioles; Aspirin; Cerebrovascular Circulation; Cilostazol; Cyclic Nucleotide Phosphodiesterases, Type 3; Cyclooxygenase Inhibitors; Drug Interactions; Endothelium, Vascular; Enzyme Inhibitors; Glyburide; Hypoglycemic Agents; In Vitro Techniques; Male; Milrinone; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitroprusside; Phosphodiesterase Inhibitors; Pressure; Prostaglandins; Rabbits; Tetrazoles; Vasodilation; Vasodilator Agents

2006
Changes in membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large-conductance Ca2+-activated K+ channels.
    The Chinese journal of physiology, 2006, Feb-28, Volume: 49, Issue:1

    Topics: Action Potentials; Animals; Apamin; beta-Cyclodextrins; Caffeic Acids; Calcium; Cholesterol; Cilostazol; Dexamethasone; Diazoxide; Glyburide; Indoles; Ion Channel Gating; Large-Conductance Calcium-Activated Potassium Channels; Membrane Lipids; Phenylethyl Alcohol; Pituitary Neoplasms; Rats; Tetrazoles; Tumor Cells, Cultured

2006