chrysin and 2-aminoethoxydiphenyl-borate

chrysin has been researched along with 2-aminoethoxydiphenyl-borate* in 2 studies

Other Studies

2 other study(ies) available for chrysin and 2-aminoethoxydiphenyl-borate

ArticleYear
The flavonoid chrysin, an endocrine disrupter, relaxes cholecystokinin- and KCl-induced tension in male guinea pig gallbladder strips through multiple signaling pathways.
    Steroids, 2014, Volume: 79

    The bioflavonoids have effects on vascular smooth muscle and gastrointestinal smooth muscle. The flavone and phytoestrogen, chrysin, has been shown to have a vasorelaxant effect on resistance blood vessels. This effect was mediated by nitric oxide (NO). Chrysin inhibited aromatase/estrogen biosynthesis in postmenopausal women. The purpose of this study was to determine if chrysin had an effect on cholecystokinin- or KCl-induced tension in male guinea pig gallbladder strips. In addition, the second messenger(s) system(s) that mediated the effect were to be determined. A pharmacologic approach was used. Male guinea pig gallbladder strips were placed in in vitro chambers filled with Krebs solution, maintained at 37 °C, and gassed with 95% O2-5% CO2. Changes in tension were recorded using a polygraph. It was shown that the PKA/cAMP second messenger system mediated part of the observed chrysin-induced relaxation of cholecystokinin-induced tension, the PKC system also mediated part of the relaxation, and the inhibition of both extracellular Ca(2+) entry and intracellular Ca(2+) release also mediated the chrysin-induced relaxation. This is the first report of chrysin having an effect on gallbladder smooth muscle contraction.

    Topics: Animals; Benzophenanthridines; Boron Compounds; Calcium; Cholagogues and Choleretics; Cholecystokinin; Dose-Response Relationship, Drug; Endocrine Disruptors; Flavonoids; Gallbladder; Guinea Pigs; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Male; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Potassium Chloride; Protein Kinase C; Signal Transduction

2014
Testosterone and dihydrotestosterone inhibit gallbladder motility through multiple signalling pathways.
    Steroids, 2008, Volume: 73, Issue:11

    Testosterone (T) has been shown to cause vasodilation in rabbit coronary arteries through a nongenomic pathway. Part of this T-induced relaxation was shown to be mediated by opening voltage dependent K(+) channels. T infusion also reduces peripheral resistance in human males with heart failure. The effects of T or its active metabolite 5-alpha dihydrotestosterone (DHT) are not well studied. This study investigates the effect of T and DHT on contraction in guinea pig gallbladder strips. T or DHT induced a concentration-dependent relaxation of cholecystokinin octapeptide (CCK)-induced tension. Pretreatment of the strips with PKA inhibitor 14-22 amide myristolated had no significant effect on the relaxation induced by either T or DHT. Pretreatment of strips with 2-APB, an inhibitor of IP(3) induced Ca(2+) release, produced a significant (p<0.001) reduction in the T- or DHT-induced relaxation. Bisindolymaleimide IV and chelerythrine Cl(-) when used in combination had no significant effect on the amount of CCK-induced tension, but significantly (p<0.01) decreased the amount of T- or DHT-induced relaxation. The flavone chrysin, an aromatase inhibitor, and genistein, an isoflavone, each produced a significant (p<0.01) reduction in CCK-induced tension. Chrysin significantly (p<0.05) increased T-induced relaxation; however, genistein had no effect on T-induced relaxation. It is concluded that T and DHT inhibits gallbladder motility rapidly by nongenomic actions of the hormones. Multiple pathways that include inhibition of intracellular Ca(2+) release, inhibition of extracellular Ca(2+) entry, and the actions of PKC may mediate this effect.

    Topics: Animals; Benzophenanthridines; Boron Compounds; Calcium; Cholecystokinin; Dihydrotestosterone; Dose-Response Relationship, Drug; Flavonoids; Gallbladder; Gallbladder Emptying; Guinea Pigs; Indoles; Inositol Phosphates; Male; Maleimides; Muscle Contraction; Muscle Relaxation; Protein Kinase C; Signal Transduction; Testosterone

2008