chrysin has been researched along with 2-amino-1-methyl-6-phenylimidazo(4-5-b)pyridine* in 3 studies
3 other study(ies) available for chrysin and 2-amino-1-methyl-6-phenylimidazo(4-5-b)pyridine
Article | Year |
---|---|
Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and benzo(a)pyrene (B(a)P) in bacterial and human hepatoma (HepG2) cells.
The aim of the present study was to investigate the antimutagenic effects of chrysin (CR), a flavonoid compound contained in many fruits, vegetables and honey. Earlier investigations with bacterial indicators showed that CR is one of the most potent antimutagens among the flavonoids. In the present study, we tested the compound in the Salmonella strains TA98 and TA100 in combination with benzo(a)pyrene (B(a)P) and 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and found pronounced protective activity over a concentration range between 10 and 100 microg/ml. The compound itself was devoid of mutagenic activity at all concentrations tested. In the micronucleus (MN) assay with human-derived HepG2 cells, a different pattern of activity was seen. CR itself caused significant induction of MN at dose levels > or =15 microg/ml; in combination experiments with B(a)P and PhIP, U-shaped dose-response curves were obtained and protection was found only in a narrow dose range (5 - 10 microg/ml). Our findings indicate that the molecular mechanisms that account for the antimutagenic effects of CR in bacterial cells are different from those responsible for the effects in HepG2 cells. Earlier reports indicate that the antimutagenic effects of CR towards B(a)P and heterocyclic amines in bacterial indicators is due to inhibition of the activity of CYP1A. In contrast to this, we found a significant induction of CYP1A1 activity in HepG2 cells by CR. It can also be excluded that induction of GST, which is involved in the detoxification of polycyclic aromatic hydrocarbons accounts for the protective effects of CR against B(a)P since this enzyme was not significantly induced in the HepG2 cells. In the case of PhIP, induction of UDGPT and/or inhibition of sulfotransferase seen in human derived HepG2 cells after exposure to CR might play a role in the antimutagenic effects. In conclusion, our findings show that data from antimutagenicity studies with bacterial indicators cannot be extrapolated to HepG2 cells, and that CR causes genotoxic effects at higher dose levels in the latter cells. The implications of these observations for human chemoprevention strategies are discussed. Topics: Animals; Antimutagenic Agents; Benzo(a)pyrene; Cell Line, Tumor; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Flavonoids; Humans; Imidazoles; Mutagenicity Tests; Mutagens | 2003 |
Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells--potential role in carcinogen bioinactivation.
Dietary flavonoids, present in fruits, vegetables and beverages have been demonstrated to be protective in cancer. Recently, we showed that the flavonoid chrysin induced UDP-glucuronosyltransferase (UGT) activity and expression in the human intestinal cell line Caco-2. In the present study, we determined the specific UGT isoform(s) induced and whether this induction facilitates glucuronidation and potential detoxification of the colon carcinogen 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-hydroxy-PhIP).. The induction was studied by immunoblot analysis with UGT isoform-specific antibodies, by Northern blot analysis and using quercetin as an isoform-specific catalytic probe. Glucuronidation of N-hydroxy-PhIP was characterized using both recombinant UGTs and control and chrysin-treated microsomes.. Western blot analysis showed that pretreatment of Caco-2 cells with 25 microM chrysin induced UGT1A1 without affecting the expression of UGTs 1A6, 1A9 and 2B7. Northern blot analysis showed markedly increased expression of UGT1AI mRNA after chrysin treatment. Similarly, glucuronidation of quercetin was greatly increased in a UGT1A1-specific way. The induction of UGT1A1 in the Caco-2 cells resulted in a 10-fold increase in the glucuronidation of N-hydroxy-PhIP.. Dietary flavonoid-mediated induction of intestinal UGT1A1 may be important for the glucuronidation and detoxification of colon and other carcinogens as well as for the presystemic metabolism of therapeutic drugs. Topics: Anticarcinogenic Agents; Blotting, Western; Caco-2 Cells; Carcinogens; Flavonoids; Glucuronosyltransferase; Humans; Hydroxylation; Imidazoles; Microsomes; Recombinant Proteins; RNA, Messenger | 2001 |
Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat.
1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red blood cells (RBC). 2. Glutathione transferase (GST) activity assayed by use of the substrate 1-chloro-2,4-dinitrobenzene was significantly induced by apigenin, genistein and tangeretin in the heart but not in colon or liver. 3. In RBC chrysin, quercetin and genistein significantly decreased the activity of glutathione reductase (GR), catalase (CAT) and glutathione peroxidase (GPx), whereas superoxide dismutase (SOD) was only significantly decreased by genistein. 4. The oxidative status of the animal, measured as plasma malondialdehyde, revealed that chrysin, quercetin, genistein, and beta-naphthoflavone (BNF) significantly protected against, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP)-induced oxidative stress. Hepatic PhIP-DNA adduct formation was not affected by any of the administered flavonoids, whereas PhIP-DNA adduct formation in colon was slightly, but significantly, inhibited by quercetin, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid doses, which by far exceed the human exposure levels, the effect on drug metabolizing and antioxidant enzymes was still very minor. The role of singly administered flavonoids in the protection against cancer and heart disease is thus expected to be limited. Topics: Animals; Anticarcinogenic Agents; Antioxidants; Apigenin; Carcinogens; Colon; Cytochrome P-450 Enzyme System; Dietary Supplements; DNA Adducts; Enzymes; Female; Flavones; Flavonoids; Genistein; Imidazoles; Inactivation, Metabolic; Liver; Oxidative Stress; Quercetin; Rats; Rats, Wistar | 1999 |