chromafenozide and tebufenozide

chromafenozide has been researched along with tebufenozide* in 3 studies

Other Studies

3 other study(ies) available for chromafenozide and tebufenozide

ArticleYear
Residue analysis of four diacylhydrazine insecticides in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method using ultra-performance liquid chromatography coupled to tandem mass spectrometry.
    Analytical and bioanalytical chemistry, 2011, Volume: 401, Issue:3

    The new analytical method using Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) procedure for simultaneous determination of diacylhydrazine insecticide residues in fruits and vegetables was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The four insecticides (tebufenozide, methoxfenozide, chromafenozide, and halofenozide) were extracted from six fruit and vegetable matrices using acetonitrile and subsequently cleaned up using primary secondary amine (PSA) or octadecylsilane (C18) as sorbent prior to UPLC-MS/MS analysis. The determination of the target compounds was achieved in less than 3.0 min using an electrospray ionization source in positive mode (ESI+) for tebufenozide, methoxfenozide, and halofenozide and in negative mode (ESI-) for chromafenozide. The limits of detection were below 0.6 μg kg(-1), while the limit of quantification did not exceed 2 μg kg(-1) in different matrices. The QuEChERS procedure by using two sorbents (PSA and C18) and the matrix-matched standards gave satisfactory recoveries and relative standard deviation (RSD) values in different matrices at four spiked levels (0.01, 0.05, 0.1, and 1 mg kg(-1)). The overall average recoveries for this method in apple, grape, cucumber, tomato, cabbage, and spinach at four levels ranged from 74.2% to 112.5% with RSDs in the range of 1.4-13.8% (n = 5) for all analytes. This study provides a theoretical basis for China to draw up maximum residue limits and analytical method for diacylhydrazine insecticide in vegetables and fruits.

    Topics: Benzopyrans; Chromatography, Liquid; Food Contamination; Fruit; Hydrazines; Insecticides; Juvenile Hormones; Molecular Structure; Tandem Mass Spectrometry; Time Factors; Vegetables

2011
Assessment of species specificity of moulting accelerating compounds in Lepidoptera: comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays.
    Pest management science, 2010, Volume: 66, Issue:5

    Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species-specific analogues can be isolated. In this study, the specificity of ecdysone agonists was addressed through a comparative analysis in two important lepidopterans, the silkworm Bombyx mori L. and the cotton leafworm Spodoptera littoralis (Boisd.).. When collections of non-steroidal ecdysone agonists containing different mother structures (dibenzoylhydrazine, acylaminoketone, tetrahydroquinoline) were tested, in vitro reporter assays showed minor differences using cell lines derived from both species. However, when compounds with high ecdysone agonist activity were examined in toxicity assays, larvicidal activity differed considerably. Of note was the identification of three dibenzoylhydrazine analogues with > 100-fold higher activity against Bombyx than against Spodoptera larvae.. The present study demonstrated that species-specific ecdysone-agonist-based insecticides can be developed, but their species specificity is not based on differences in the activation of the ecdysone receptor but rather on unidentified in vivo parameters such as permeability of the cuticle, uptake/excretion by the gut or metabolic detoxification.

    Topics: Animals; Bombyx; Cell Line; Ecdysone; Genes, Reporter; Hydrazines; Juvenile Hormones; Larva; Molting; Receptors, Steroid; Species Specificity; Spodoptera; Toxicity Tests

2010
Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies.
    Journal of molecular modeling, 2003, Volume: 9, Issue:1

    Three-dimensional structure models of the ligand-binding domain of the ecdysone receptor of Heliothis virescens were built by the homology modeling technique from the crystal structures of nuclear receptors. Two models were created based both on known ligand-binding domain structures of the receptors with the highest sequence identity to the ecdysone receptor, and on those of steroid hormone receptors. The latter model, which was found to have better stereochemical quality and be in good agreement with the binding of the steroidal framework of the endogenous agonist 20-hydroxyecdysone, was used for docking studies. The docking of 20-hydroxyecdysone to the receptor model revealed that the ligand molecule can interact with the receptor in a similar manner to other steroid hormone-receptor complexes. The docking of a dibenzoylhydrazine agonist, chromafenozide, was performed based on the correspondences between the molecule and 20-dydroxyecdysone expected by molecular comparison. The interactions of the ligands with the receptor in the complexes modeled were investigated and found to be consistent with known structure-activity relationships.

    Topics: Amino Acid Sequence; Animals; Benzopyrans; Binding Sites; Binding, Competitive; Ecdysterone; Hydrazines; Insect Proteins; Models, Molecular; Molecular Sequence Data; Molecular Structure; Moths; Protein Conformation; Receptors, Steroid; Sequence Alignment; Sequence Homology, Amino Acid

2003