chondroitin-sulfates has been researched along with sodium-chlorate* in 8 studies
8 other study(ies) available for chondroitin-sulfates and sodium-chlorate
Article | Year |
---|---|
A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.
Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. Topics: Animals; Cell Proliferation; Chlorates; Chondroitin Sulfates; Dermatan Sulfate; Disaccharides; Echinodermata; Glycosaminoglycans; Regeneration; Sulfotransferases | 2017 |
Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture.
Glycosaminoglycans (GAGs) have been implicated in the regulation of outflow resistance of aqueous humor flow through the trabecular meshwork (TM). Their role was further investigated by assessment of the effects of chlorate, an inhibitor of sulfation, and beta-xyloside, which provides a competitive nucleation point for addition of disaccharide units, in anterior segment perfusion culture.. Outflow facility was measured in perfused porcine and human anterior organ cultures treated with 20 or 50 mM sodium chlorate, or 1 mM beta-xyloside. Perturbation of extracellular matrix (ECM) components was assessed in paraffin-embedded sections by immunofluorescence and confocal microscopy. Parallel experiments were conducted on cultured TM cells.. Outflow facility increased in porcine eyes with chlorate (3-fold) and beta-xyloside (3.5-fold) treatments. In human eyes, outflow increased approximately 1.5-fold and took longer (>48 hours) to occur. By confocal microscopy, immunostaining for chondroitin and heparan sulfates was observed on edges of human TM beams in nontreated eyes, with intense staining in the juxtacanalicular tissue (JCT) region. In treated eyes, staining of beam edges was severely reduced and was instead found in plaques. Chlorate treatment resulted in a striated pattern of GAG staining in the human JCT region. Fibronectin immunostaining was altered in beta-xyloside-treated eyes, whereas in cell culture, chlorate induced formation of thick fibronectin fibrils, to which tenascin C colocalized.. Disrupting GAG chain biosynthesis increased outflow facility in perfusion culture and induced atypical ECM molecule interactions in cell culture. This study provides direct evidence of the critical role of GAG chains in regulating outflow resistance in human TM. Topics: Aged; Aged, 80 and over; Animals; Aqueous Humor; Cells, Cultured; Chlorates; Chondroitin Sulfates; Extracellular Matrix; Female; Fibronectins; Fluorescent Antibody Technique, Indirect; Glycosaminoglycans; Glycosides; Heparitin Sulfate; Humans; Hyaluronic Acid; Male; Microscopy, Confocal; Middle Aged; Organ Culture Techniques; Swine; Tenascin; Trabecular Meshwork | 2008 |
Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance.
Chondroitin/dermatan sulfotransferases (C/D-STs) underlie the synthesis of diverse sulfated structures in chondroitin/dermatan sulfate (CS/DS) chains. Recent reports have suggested that particular sulfated structures on CS/DS polymers are involved in the regulation of neural stem cell proliferation. Here, we examined the gene expression profile of C/D-STs in the neurogenic regions of embryonic and adult mouse central nervous system. Using reverse transcription-polymerase chain reaction analysis, all presently known C/D-STs were detected in the dorsal and ventral telencephalon of the embryonic day 13 (E13) mouse embryo, with the exception of chondroitin 4-O-sulfotransferase (C4ST)-3. In situ hybridization for C4ST-1, dermatan 4-O-sulfotransferase-1, chondroitin 6-O-sulfotransferase (C6ST)-1 and -2, and uronosyl 2-O-sulfotransferase revealed a cellular expression of these sulfotransferase genes in the embryonic germinal zones of the forebrain. The expression of multiple C/D-STs is maintained on cells residing in the adult neural stem cell niche. Neural stem cells cultured as neurospheres maintained the expression of these enzymes. Consistent with the gene expression pattern of C/D-STs, disaccharide analysis revealed that neurospheres and E13 mouse brain cells synthesized CS/DS chains containing monosulfated, but also significant amounts of disulfated, disaccharide units. Functionally, the inhibition of sulfation with sodium chlorate resulted in a significant, dose-dependent decrease in neurosphere number that could not be rescued by the addition of individual purified glycosaminoglycan (GAG) chains, including heparin. These findings argue against a simple charge-based mechanism of GAG chains in neural stem cell maintenance. The synergistic activities of C/D-STs might allow for the adaptive modification of CS/DS proteoglycans with diversely sulfated CS/DS chains in the extracellular microenvironment that surrounds neural stem cells. Topics: Alternative Splicing; Animals; Brain; Cell Movement; Central Nervous System; Chlorates; Chondroitin Sulfates; Culture Media, Conditioned; Dermatan Sulfate; Disaccharides; Epitopes; Gene Expression Regulation, Enzymologic; In Situ Hybridization; Mice; Neurons; Protein Isoforms; Receptor-Like Protein Tyrosine Phosphatases, Class 5; Stem Cells; Sulfotransferases | 2008 |
Chondroitin sulfate A chains enhance platelet derived growth factor-mediated signalling in fibrosarcoma cells.
Platelet derived growth factor is involved in the autocrine growth stimulation of malignant cells, the stimulation of angiogenesis and the recruitment and regulation of tumor fibroblasts. PDGF has been shown to physically interact with glycosaminoglycans which are abundant in the fibrosarcoma cell microenvironment. Aim of the present study was to examine the effects of glycosaminoglycans on the mitogenic function of platelet derived growth factor in two human fibrosarcoma cell lines (B6FS, HT1080). For this purpose exogenously added glycosaminoglycans, regulators of endogenous glycosaminoglycan synthesis (sodium chlorate as selective inhibitor and beta-D-xyloside as a stimulator) and specific glycosidases to cleave cell-associated glycosaminoglycans, were utilized. Platelet derived growth factor demonstrated a growth stimulating effect on B6FS, whereas no effect was evident on HT1080 fibrosarcoma cells. Beta-D-xyloside had no effect on the basal level or the platelet derived growth factor-induced cell proliferation, whereas sodium chlorate severely reduced the basal level of proliferation in both cell lines. Significant co-stimulatory effects of chondroitin sulfate A in combination with platelet derived growth factor BB on the growth of HT1080 and B6FS cells were found. The co-stimulatory effect of chondroitin sulfate A was not due to transcriptional up regulation of platelet derived growth factor receptors genes, but rather to more efficient signalling of tyrosine kinase receptors. In conclusion, this study shows that chondroitin sulfate A can enhance the mitogenic activity of platelet-derived growth factor in fibrosarcoma cells utilizing a pathway which involves tyrosine kinases. This result introduces a new modulating role for chondroitin sulfate in signalling pathways critical for cancer growth. Topics: Becaplermin; Cell Proliferation; Chlorates; Chondroitin Sulfates; Fibrosarcoma; Gene Expression Regulation; Genistein; Glycosides; Humans; Platelet-Derived Growth Factor; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-sis; Receptor, Platelet-Derived Growth Factor alpha; Receptor, Platelet-Derived Growth Factor beta; RNA, Messenger; Signal Transduction; Transcription, Genetic | 2006 |
Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells.
Recognition events between hematopoietic progenitor cells (HPC) and bone marrow endothelial cells (BMEC) initiate homing of HPC to the bone marrow. The chemokine SDF-1 is present on BMEC and plays a crucial role in bone marrow engraftment. We studied the role of proteoglycans (PGs) on BMEC in binding and presentation of SDF-1. SDF-1 mRNA was present in three human BMEC cell lines. Competition experiments showed that 125I-SDF-1 alpha binding to the BMEC cell line 4LHBMEC was inhibited by heparins, heparan sulfate (HS) intestinal mucosa, chondroitin and dermatan sulfate (CS/DS), but not by HS bovine kidney. Pretreatment of 4LHBMEC with glycosaminoglycan (GAG)-degrading enzymes or sodium chlorate demonstrated that SDF-1 bound to both HSPGs and CS/DSPGs in a sulfation-dependent manner, as determined with an SDF-1 antibody recognizing the CXCR4-binding site. 4LHBMEC bound four-fold more SDF-1 than HUVEC. Isolated endothelial PGs did not bind SDF-1 in a filter or microplate-binding assay, suggesting the necessity of membrane association. In flow adhesion experiments, endothelial arrest of CXCR4+ KG-1 and not of CXCR4- KG-1a cells increased significantly when SDF-1 was presented on 4LHBMEC. In conclusion, SDF-1 is produced by BMEC and binds to the BMEC cell surface via HS and CS/DS-GAGs, thereby presenting its CXCR4 binding site to HPC contributing to their arrest. Topics: Animals; Bone Marrow Cells; Cattle; Chemokine CXCL12; Chemokines, CXC; Chlorates; Chondroitin Sulfates; Dermatan Sulfate; DNA Primers; Endothelium, Vascular; Flow Cytometry; Hematopoietic Stem Cells; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Polymerase Chain Reaction; Protein Binding; Stromal Cells | 2003 |
Proteoglycans in macrophages: characterization and possible role in the cellular uptake of lipoproteins.
The murine macrophage cell line J774 was incubated with [35S]sulphate. The cell-associated 35S-labelled macromolecules were shown to be proteoglycans and glycosaminoglycans in similar amounts. The possible presence of cell-surface proteoglycans was investigated by incubating [35S]sulphate-labelled cells with trypsin for 15 min. The released material contained approx. 70% free glycosaminoglycan chains and 30% proteoglycans. The latter component was demonstrated by HNO2 treatment to contain heparan sulphate. In the total cell fraction not treated with trypsin a small but significant portion was shown to be chondroitin sulphate proteoglycan. The cell-associated glycosaminoglycans contained both chondroitin sulphate and heparan sulphate. To investigate possible biological functions of cell-surface proteoglycans in macrophages, cells were incubated with NaClO3 to inhibit sulphation of proteoglycans and beta-d-xyloside to abrogate proteoglycan expression. The uptake of oxidized 125I-tyraminylcellobiose-labelled low-density lipoprotein (125I-TC-LDL) was typically two to three times higher than that of native 125I-TC-LDL in untreated J774 cells. The cellular uptake at 37 degreesC of native 125I-TC-LDL was decreased 25% after both NaClO3 and xyloside treatment, whereas the uptake of oxidized 125I-TC-LDL was decreased 35% after both types of treatment. The mRNA levels for the scavenger receptor A-II and the LDL receptor were not affected by NaClO3 or xyloside treatment. Furthermore, fluid-phase endocytosis, measured as uptake of horseradish peroxidase, and receptor-mediated endocytosis, measured as uptake of 125I-TC-ovalbumin, were not affected by NaClO3 treatment of J774 cells. Removal of cell-surface chondroitin sulphate with chondroitinase ABC decreased only the binding of native 125I-TC-LDL, whereas removal of heparan sulphate with heparitinase decreased the binding of both oxidized and native 125I-TC-LDL. Addition of lipoprotein lipase increased the uptake of oxidized 125I-TC-LDL 1.7 times and the uptake of native 125I-TC-LDL 2.1 times. The binding of the former was more sensitive to NaClO3 treatment than the latter. The results presented support the notion that some of the uptake pathways for lipoproteins in the foam-cell-forming macrophages depend on the presence of cell-surface heparan sulphate and chondroitin sulphate. Topics: Animals; Cell Line; Chlorates; Chondroitin ABC Lyase; Chondroitin Sulfates; Endocytosis; Glycosides; Heparitin Sulfate; Lipoprotein Lipase; Lipoproteins; Lipoproteins, LDL; Macrophages; Membrane Glycoproteins; Membrane Proteins; Mice; Ovalbumin; Polysaccharide-Lyases; Proteoglycans; Receptors, Immunologic; Receptors, Lipoprotein; Receptors, Scavenger; RNA, Messenger; Scavenger Receptors, Class B; Trypsin | 1998 |
Evidence for the role of proteoglycans in cation-mediated gene transfer.
We report evidence that gene complexes, consisting of polycations and plasmid DNA enter cells via binding to membrane-associated proteoglycans. Treatment of HeLa cells with sodium chlorate, a potent inhibitor of proteoglycan sulfation, reduced luciferase expression by 69%. Cellular treatment with heparinase and chondroitinase ABC inhibited expression by 78% and 20% with respect to control cells. Transfection was dramatically inhibited by heparin and heparan sulfate and to a smaller extent by chondroitan sulfate B. Transfection of mutant, proteoglycan deficient Chinese hamster ovary cells was 53 x lower than of wild-type cells. For each of these assays, the intracellular uptake of DNA at 37 degrees C and the binding of DNA to the cell membrane at 4 degrees C was impaired. Preliminary transfection experiments conducted in mutant and wild-type Chinese hamster ovary cells suggest that transfection by some cationic lipids is also proteoglycan dependent. The variable distribution of proteoglycans among tissues may explain why some cell types are more susceptible to transfection than others. Topics: Animals; Cations; Chlorates; CHO Cells; Chondroitin Sulfates; Cricetinae; Cricetulus; DNA; HeLa Cells; Heparin; Humans; Plasmids; Polyamines; Polyelectrolytes; Polylysine; Proteoglycans; Transfection | 1996 |
Inhibition of synthesis of rat parotid secretory proteoglycan in a gland slice system.
The chondroitin sulphate contained within the secretory granules of the rat parotid gland and its saliva was shown to be in the form of a proteoglycan by using inhibitors of proteoglycan synthesis in a gland slice system. Gland slices were incubated in either p-nitrophenyl-beta-D-xyloside or chlorate in the presence of both [3H]-leucine and [35S]-sulphate. The slices were next homogenized and either the 250 g supernatant fraction (for initial experiments) or secretory granule-containing fractions were isolated. Protein and proteoglycans of these fractions were precipitated in 10% trichloracetic acid (TCA), and glycosaminoglycans in cetylpyridinium chloride. [3H]-leucine and [35S]-sulphate were quantitated in each type of precipitate by scintillation counting. The results showed that 1 mM xyloside had no effect on protein or glycosaminoglycan synthesis but blocked incorporation of radiosulphate into TCA-precipitable material. Sixteen mM chlorate almost totally inhibited incorporation of radiosulphate into glycosaminoglycan and TCA-precipitable material. These findings demonstrate that the rat parotid secretory chondroitin sulphate is indeed a proteoglycan because its synthesis is blocked by the protein-core analogue acceptor, p-nitrophenyl-beta-D-xyloside. This system offers opportunities for exploring the functional role of chondroitin sulphate proteoglycan in this salivary gland. Topics: Animals; Chlorates; Chondroitin Sulfates; Cytoplasmic Granules; Dose-Response Relationship, Drug; Glycoproteins; Glycosaminoglycans; Glycosides; Leucine; Male; Parotid Gland; Rats; Rats, Inbred Strains; Salivary Proteins and Peptides; Sulfates; Sulfur Radioisotopes; Tritium | 1992 |