chondroitin-sulfates and 1-1-diphenyl-2-picrylhydrazyl

chondroitin-sulfates has been researched along with 1-1-diphenyl-2-picrylhydrazyl* in 3 studies

Other Studies

3 other study(ies) available for chondroitin-sulfates and 1-1-diphenyl-2-picrylhydrazyl

ArticleYear
The synthesis of a new unsaturated derivative of chondroitin sulfate with increased antioxidant properties.
    Carbohydrate polymers, 2018, Jun-15, Volume: 190

    Chondroitin sulfate (CS) was regio-specifically modified to an unsaturated derivative (ΔCS) with a double bond in positions 4 and 5 of N-acetyl-d-galactosamine. The structure of ΔCS was elucidated in detail by two dimensional nuclear magnetic resonance, ultraviolet spectroscopy and mass spectrometry. The introduction of a nucleophilic CC double bond into a polymer backbone had no influence on biocompatibility of CS, which was demonstrated by MTT live-dead assay and enzymatic degradation in vitro. On the other hand the chemical modification significantly enhanced the reactivity of ΔCS towards numerous oxidizing agents, which might be promising for a variety of biomedical and cosmetic applications.

    Topics: 3T3 Cells; Animals; Biphenyl Compounds; Chemistry Techniques, Synthetic; Chondroitin Sulfates; Free Radical Scavengers; Materials Testing; Mice; Oxidation-Reduction; Picrates

2018
Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.
    Bioscience, biotechnology, and biochemistry, 2016, Volume: 80, Issue:6

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

    Topics: Animals; Antioxidants; Biphenyl Compounds; Calcium; Cartilage; Cations, Divalent; Cattle; Chelating Agents; Chondroitin Sulfates; Hydroxyl Radical; Intestinal Mucosa; Magnesium; Manganese; Picrates; Salmonidae; Sharks; Superoxides; Swine; Trachea; Zinc

2016
Oxidative modification of apolipoprotein E in human very-low-density lipoprotein and its inhibition by glycosaminoglycans.
    Archives of biochemistry and biophysics, 1999, Jul-01, Volume: 367, Issue:1

    The mechanism of metal ion-catalyzed oxidative modification of apolipoprotein E (apoE) in human very-low-density lipoprotein (VLDL) and its inhibition by glycosaminoglycan (GAG) was investigated in vitro. The VLDL oxidation catalyzed by Cu2+ led to the lipid peroxidation, the formation of aggregates, and covalent modification of apoE. The modified apoE lost heparin-binding activity. These results suggest that the lipid peroxidation of VLDL and modification of apoE cause impairment of lipid uptake by cells and deposit the oxidized lipids in the tissues. The lipid peroxidation and oxidative modification of apoE in VLDL mediated by Cu2+ and an aqueous radical generator were suppressed by GAG, heparan sulfate, heparin, and chondroitin sulfate A, even though GAGs demonstrated no ability to scavenge alpha,alpha-diphenyl-beta-picrylhydrazyl radical. There were no relationships between inhibitory activity of GAGs in the VLDL oxidation and their number of sulfate groups which possess chelating activity of metal ion. Therefore, it can be considered that the inhibition of VLDL oxidation by GAGs is possibly due to the interaction between GAG and VLDL which bring about the steric hindrance, interference with the reaction between VLDL particle and the reactive oxygen species. These studies suggest that GAGs preserve the biological functions of apoE from oxidative stress.

    Topics: Adult; Aldehydes; Alzheimer Disease; Amidines; Apolipoproteins E; Bepridil; Biphenyl Compounds; Chelating Agents; Cholesterol Esters; Chondroitin Sulfates; Copper Sulfate; Dextrans; Free Radical Scavengers; Glutathione; Glycosaminoglycans; Heparin; Hippocampus; Humans; Hydrogen-Ion Concentration; Lipid Peroxidation; Lipoproteins, VLDL; Male; Picrates; Reactive Oxygen Species; Thiobarbituric Acid Reactive Substances

1999