cholecystokinin-39 and big-gastrin

cholecystokinin-39 has been researched along with big-gastrin* in 2 studies

Other Studies

2 other study(ies) available for cholecystokinin-39 and big-gastrin

ArticleYear
Facile solid-phase synthesis of sulfated tyrosine-containing peptides: total synthesis of human big gastrin-II and cholecystokinin (CCK)-39.
    The Journal of organic chemistry, 2001, Jan-12, Volume: 66, Issue:1

    Chemical synthesis of tyrosine O-sulfated peptides is still a laborious task for peptide chemists because of the intrinsic acid-lability of the sulfate moiety. An efficient cleavage/deprotection procedure without loss of the sulfate is the critical difficulty remaining to be solved for fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase synthesis of sulfated peptides. To overcome the difficulty, TFA-mediated solvolysis rates of a tyrosine O-sulfate [Tyr(SO3H)] residue and two protecting groups, tBu for the hydroxyl group of Ser and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for the guanidino group of Arg, were examined in detail. The desulfation obeyed first-order kinetics with a large entropy (59.6 J.K-1.mol-1) and enthalpy (110.5 kJ.mol-1) of activation. These values substantiated that the desulfation rate of the rigidly solvated Tyr(SO3H) residue was strongly temperature-dependent. By contrast, the SN1-type deprotections were less temperature-dependent and proceeded smoothly in TFA of a high ionizing power. Based on the large rate difference between the desulfation and the SN1-type deprotections in cold TFA, an efficient deprotection protocol for the sulfated peptides was developed. Our synthetic strategy for Tyr(SO3H)-containing peptides with this effective deprotection protocol is as follows: (i) a sulfated peptide chain is directly constructed on 2-chlorotrityl resin with Fmoc-based solid-phase chemistry using Fmoc-Tyr(SO3Na)-OH as a building block; (ii) the protected peptide-resin is treated with 90% aqueous TFA at 0 degree C for an appropriate period of time for the cleavage and deprotection. Human cholecystokinin (CCK)-12, mini gastrin-II (14 residues), and little gastrin-II (17 residues) were synthesized with this method in 26-38% yields without any difficulties. This method was further applied to the stepwise synthesis of human big gastrin-II (34 residues), CCK-33 and -39. Despite the prolonged acid treatment (15-18 h at 0 degree C), the ratios of the desulfated peptides were less than 15%, and the pure sulfated peptides were obtained in around 10% yields.

    Topics: Amino Acid Sequence; Animals; Cholecystokinin; Chromatography, High Pressure Liquid; Gastrins; Humans; Hydrolysis; In Vitro Techniques; Indicators and Reagents; Islets of Langerhans; Kinetics; Male; Molecular Sequence Data; Peptides; Protein Precursors; Rats; Serine Endopeptidases; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Sulfates; Tyrosine; Water

2001
Plasma concentrations of cholecystokinin, CCK-8, and CCK-33, 39 in rats, determined by a method based on enzyme digestion of gastrin before HPLC and RIA detection of CCK.
    Gut, 1989, Volume: 30, Issue:2

    A new specific method for determination of cholecystokinin, CCK-8, and CCK-33, 39 in rat plasma is described. Plasma CCK radioimmunoassay (RIA) is difficult, because of cross-reactivity with gastrin. In the rat, problems because of difficulties in separating gastrin from CCK by high performance liquid chromatography (HPLC) exist. These were solved by enzyme digestion of gastrin before HPLC separation of molecular variants of CCK from gastrin fragments. Cholecystokinin immunoreactive forms in the HPLC fractions were determined by an antibody, which recognises the carboxyl terminus of CCK and gastrin. Fasting concentrations of small (CCK-8) and large (CCK-33, 39) molecular forms of CCK averaged 1.9 (0.3) pM and were raised to 13.4 (3.8) pM in rats fed ad libitum. Cholecystokinin in lactating rats rose two-fold after suckling, compared with 2.8 fold in response to feeding. The basal ratio between CCK-8 and CCK-33, 39 was approximately 1:1, but increased in favour of CCK-8 after feeding and in response to suckling. Gastrin like immunoreactivity measured in unextracted plasma was found to rise after feeding, but was unchanged in response to suckling.

    Topics: Animals; Cholecystokinin; Chromatography, High Pressure Liquid; Eating; Female; Gastric Mucosa; Gastrins; Intestinal Mucosa; Lactation; Methods; Pregnancy; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains; Serine Endopeptidases; Sincalide

1989