cholecystokinin-(27-33)--tert-butyloxycarbonyl-nle(28-31)- has been researched along with cholecystokinin-9* in 1 studies
1 other study(ies) available for cholecystokinin-(27-33)--tert-butyloxycarbonyl-nle(28-31)- and cholecystokinin-9
Article | Year |
---|---|
Synthesis and biological activities of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin. On the importance of the peptide bonds.
A series of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin in which each peptide bond, one at a time, has been replaced by a CH2NH bond were synthesized: Z-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp psi-(CH2NH)Phe-NH2 (1), Z-Tyr(SO3-)-Nle-Gly-Trp-Nle psi (CH2NH)Asp-Phe-NH2 (2), Z-Tyr(SO3-)-Nle-Gly-Trp psi-(CH2NH)Nle-Asp-Phe-NH2 (3), Z-Tyr(SO3-)-Nle-Gly psi(CH2NH)Trp-Nle-Asp-Phe-NH2 (4), Z-Tyr(SO3-)-Nle psi-(CH2NH)Gly-Trp-Nle-Asp-Phe-NH2 (5), Z-Tyr(SO3-)-Met-Gly-Trp-Nle-Asp psi (CH2NH)Phe-NH2 (6), Z-Tyr-(SO3-)-Met-Gly-Trp-Nle psi (CH2NH)Asp-Phe-NH2 (7), Z-Tyr(SO3-)-Met-Gly-Trp psi (CH2NH)Nle-Asp-Phe-NH2 (8). These derivatives were studied for their ability to stimulate amylase release from rat pancreatic acini and to inhibit the binding of labeled CCK-9 to rat pancreatic acini and to guinea pig brain membrane CCK receptors. They were compared to the potent CCK-8 analogue Boc-Asp-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-Phe-NH2. All of these pseudopeptides were able to stimulate amylase secretion with the same efficacy as CCK-8 but with varying potencies. These compounds were also potent in inhibiting the binding of labeled CCK-9 to CCK receptors from rat pancreatic acini and from guinea pig brain membranes. Topics: Amylases; Animals; Brain; Cell Membrane; Chemical Phenomena; Chemistry; Cholecystokinin; Guinea Pigs; Male; Oligopeptides; Pancreas; Peptide Fragments; Rats; Rats, Inbred Strains; Receptors, Cholecystokinin; Sincalide; Structure-Activity Relationship | 1987 |