cholecalciferol has been researched along with lauric-acid* in 2 studies
2 other study(ies) available for cholecalciferol and lauric-acid
Article | Year |
---|---|
Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes.
1. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by 12 recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes have been investigated. 2. Arachidonic acid (50 microM) significantly inhibited CYP1A1- and 1A2-dependent 7-ethoxycoumarin O-deethylations, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent R-warfarin 7-hydroxylation. This chemical also inhibited slightly the xenobiotic oxidations catalysed by CYP1B1, 2B6, 2C9, 2D6, 2E1 and 3A4 in recombinant enzyme systems. 3. Retinol, retinoic acid and cholecalciferol were strong inhibitors for xenobiotic oxidations catalysed by recombinant CYP1A1, 2C8 and 2C19. 4. Dixon plots of inhibitions of CYP1A1-, 1A2-, 2C8- and 2C19-dependent xenobiotic oxidations by arachidonic acid, of CYP1A1-, 2B6- and 2C19-dependent activities by retinol, and of CYP1A1- and 2C19-dependent activities by cholecalciferol indicated that these chemicals inhibit P450 activities mainly through a competitive mechanism. 5. In human liver microsomes, arachidonic acid inhibited CYP1A2-dependent theophylline hydroxylation, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent omeprazole 5-hydroxylation. Taxol 6alpha-hydroxylation was also inhibited by retinol and retinoic acid, and omeprazole 5-hydroxylation was inhibited by retinol in human liver microsomes. 6. These results suggest that xenobiotic oxidations by P450 enzymes are affected by endobiotic chemicals and that the endobiotic-xenobiotic interactions as well as drug-drug interactions may be of great importance when understanding the basis for pharmacological and toxicological actions of a number of xenobiotic chemicals. Topics: Arachidonic Acid; Aryl Hydrocarbon Hydroxylases; Cholecalciferol; Coumarins; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2A6; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2E1; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Ethanolamines; Humans; Isoenzymes; Lauric Acids; Microsomes, Liver; Mixed Function Oxygenases; Nifedipine; Omeprazole; Oxidation-Reduction; Oxidoreductases, N-Demethylating; Paclitaxel; Prostaglandins; Recombinant Proteins; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases; Theophylline; Tretinoin; Warfarin; Xenobiotics | 1999 |
Characterization of pig kidney microsomal cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 and C27 steroids.
The cytochrome P-450 enzyme which catalyses 25-hydroxylation of vitamin D3 (cytochrome P-450(25] from pig kidney microsomes [Postlind & Wikvall (1988) Biochem. J. 253, 549-552] has been further purified. The specific content of cytochrome P-450 was 15.0 nmol.mg of protein-1, and the protein showed a single spot with an apparent isoelectric point of 7.4 and an Mr of 50,500 upon two-dimensional isoelectric-focusing/SDS/PAGE. The 25-hydroxylase activity towards vitamin D3 was 124 pmol.min-1.nmol of cytochrome P-450-1 and towards 1 alpha-hydroxyvitamin D3 it was 1375 pmol.min-1.nmol-1. The preparation also catalysed the 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol at a rate of 1000 pmol.min-1.nmol of cytochrome P-450-1 and omega-1 hydroxylation of lauric acid at a rate of 200 pmol.min-1.nmol of cytochrome P-450-1. A monoclonal antibody raised against the 25-hydroxylating cytochrome P-450, designated mAb 25E5, was prepared. After coupling to Sepharose, the antibody was able to bind to cytochrome P-450(25) from kidney as well as from pig liver microsomes, and to immunoprecipitate the activity for 25-hydroxylation of vitamin D3 and 5 beta-cholestane-3 alpha,7 alpha-diol when assayed in a reconstituted system. The hydroxylase activity towards lauric acid was not inhibited by the antibody. By SDS/PAGE and immunoblotting with mAb 25E5, cytochrome P-450(25) was detected in both pig kidney and pig liver microsomes. These results indicate a similar or the same species of cytochrome P-450 in pig kidney and liver microsomes catalysing 25-hydroxylation of vitamin D3 and C27 steroids. The N-terminal amino acid sequence of the purified cytochrome P-450(25) from pig kidney microsomes differed from those of hitherto isolated mammalian cytochromes P-450. Topics: Amino Acid Sequence; Animals; Cholecalciferol; Cholestanetriol 26-Monooxygenase; Cholestanols; Cholesterol; Cytochrome P-450 Enzyme System; Female; Hydroxylation; Immunoblotting; Immunosorbent Techniques; Kidney; Kinetics; Lauric Acids; Male; Microsomes; Microsomes, Liver; Molecular Sequence Data; NADP; NADPH-Ferrihemoprotein Reductase; Steroid Hydroxylases; Swine | 1990 |