chlorpromazine and bromhexine

chlorpromazine has been researched along with bromhexine in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's1 (14.29)2.80

Authors

AuthorsStudies
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Glen, RC; Lowe, R; Mitchell, JB1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Dalvie, D; Loi, CM; Smith, DA1
Drakoulis, N; Ion, GND; Moschos, SA; Nikolouzakis, TK; Nitulescu, G; Nitulescu, GM; Paunescu, H; Petrakis, D; Spandidos, DA; Tsatsakis, A1

Reviews

1 review(s) available for chlorpromazine and bromhexine

ArticleYear
Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review).
    International journal of molecular medicine, 2020, Volume: 46, Issue:2

    Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Betacoronavirus; Bromhexine; Chlorpromazine; Clinical Trials as Topic; Coronavirus Infections; COVID-19; Diminazene; Drug Repositioning; Esters; Gabexate; Guanidines; Humans; Pandemics; Peptidyl-Dipeptidase A; Pneumonia, Viral; Receptor, Angiotensin, Type 1; Recombinant Proteins; SARS-CoV-2; Signal Transduction; Virus Internalization

2020

Other Studies

6 other study(ies) available for chlorpromazine and bromhexine

ArticleYear
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Which metabolites circulate?
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:5

    Topics: Humans; Metabolic Clearance Rate; Pharmaceutical Preparations

2013