chlorpromazine and 1-(3-trifluoromethylphenyl)piperazine

chlorpromazine has been researched along with 1-(3-trifluoromethylphenyl)piperazine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19901 (33.33)18.7374
1990's2 (66.67)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baldy, WJ; Davis, CB; DiStefano, DL; Elgin, RJ; Fedde, CL; Kesslick, JM; Martin, GE; Mathiasen, JR; Scott, MK; Shank, RP1
Amlaiky, N; Hen, R; Plassat, JL1
Druck, T; Hamblin, MW; Huebner, K; Khan, N; Kohen, R; Lachowicz, JE; Meltzer, HY; Metcalf, MA; Roth, BL; Sibley, DR1

Other Studies

3 other study(ies) available for chlorpromazine and 1-(3-trifluoromethylphenyl)piperazine

ArticleYear
Activity of aromatic substituted phenylpiperazines lacking affinity for dopamine binding sites in a preclinical test of antipsychotic efficacy.
    Journal of medicinal chemistry, 1989, Volume: 32, Issue:5

    Topics: Animals; Antipsychotic Agents; Avoidance Learning; Dose-Response Relationship, Drug; Piperazines; Rats; Receptors, Dopamine; Receptors, Serotonin; Structure-Activity Relationship

1989
Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase.
    Molecular pharmacology, 1993, Volume: 44, Issue:2

    Topics: Adenylyl Cyclases; Amino Acid Sequence; Animals; Base Sequence; Brain; Cloning, Molecular; Cyclic AMP; DNA; Drosophila; Enzyme Activation; Humans; Intestinal Mucosa; Mice; Molecular Sequence Data; Myocardium; Receptors, Serotonin; Sequence Homology, Amino Acid; Serotonin Antagonists; Serotonin Receptor Agonists

1993
Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor.
    Journal of neurochemistry, 1996, Volume: 66, Issue:1

    Topics: Adenylyl Cyclases; Amino Acid Sequence; Animals; Antipsychotic Agents; Base Sequence; Brain Chemistry; Cell Line, Transformed; Chlorocebus aethiops; Chromosome Mapping; Chromosomes, Human, Pair 1; Cloning, Molecular; Clozapine; DNA, Complementary; Genes; Humans; Kinetics; Molecular Sequence Data; Open Reading Frames; Protein Conformation; Rats; Receptors, Serotonin; Recombinant Proteins; Sequence Alignment; Sequence Homology, Nucleic Acid; Serotonin Agents; Signal Transduction; Species Specificity

1996