Page last updated: 2024-08-24

chloroquine diphosphate and reserpine

chloroquine diphosphate has been researched along with reserpine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (66.67)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Chibale, K; Egan, TJ; Hunter, R; Joshi, MC; Ndove, J; Nsumiwa, S; Okombo, J; Taylor, D; Wiesner, L1

Other Studies

3 other study(ies) available for chloroquine diphosphate and reserpine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant Plasmodium falciparum and Exhibit Oral Activity in Mice.
    Journal of medicinal chemistry, 2017, 12-28, Volume: 60, Issue:24

    Topics: Administration, Oral; Aminopyridines; Aminoquinolines; Animals; Antimalarials; Cell Membrane Permeability; Chloroquine; CHO Cells; Cricetulus; Drug Evaluation, Preclinical; Drug Resistance, Microbial; ERG1 Potassium Channel; Hemeproteins; Humans; Malaria; Male; Mice, Inbred BALB C; Plasmodium berghei; Plasmodium falciparum; Solubility; Structure-Activity Relationship

2017