chlorophyll-d and chlorophyll-f

chlorophyll-d has been researched along with chlorophyll-f* in 8 studies

Reviews

4 review(s) available for chlorophyll-d and chlorophyll-f

ArticleYear
Far-red light acclimation in diverse oxygenic photosynthetic organisms.
    Photosynthesis research, 2019, Volume: 142, Issue:3

    Oxygenic photosynthesis has historically been considered limited to be driven by the wavelengths of visible light. However, in the last few decades, various adaptations have been discovered that allow algae, cyanobacteria, and even plants to utilize longer wavelength light in the far-red spectral range. These adaptations provide distinct advantages to the species possessing them, allowing the effective utilization of shade light under highly filtered light environments. In prokaryotes, these adaptations include the production of far-red-absorbing chlorophylls d and f and the remodeling of phycobilisome antennas and reaction centers. Eukaryotes express specialized light-harvesting pigment-protein complexes that use interactions between pigments and their protein environment to spectrally tune the absorption of chlorophyll a. If these adaptations could be applied to crop plants, a potentially significant increase in photon utilization in lower shaded leaves could be realized, improving crop yields.

    Topics: Acclimatization; Chlorophyll; Chlorophyll A; Cyanobacteria; Light; Light-Harvesting Protein Complexes; Photosynthesis; Photosystem II Protein Complex; Plant Physiological Phenomena

2019
Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria.
    Biochemistry. Biokhimiia, 2016, Volume: 81, Issue:3

    The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.

    Topics: Chlorophyll; Cyanobacteria; Electron Transport; Energy Metabolism; Photosynthesis; Photosynthetic Reaction Center Complex Proteins

2016
Adaptive and acclimative responses of cyanobacteria to far-red light.
    Environmental microbiology, 2015, Volume: 17, Issue:10

    Cyanobacteria use three major photosynthetic complexes, photosystem (PS) I, PS II and phycobilisomes, to harvest and convert sunlight into chemical energy. Until recently, it was generally thought that cyanobacteria only used light between 400 nm and 700 nm to perform photosynthesis. However, the discovery of chlorophyll (Chl) d in Acaryochloris marina and Chl f in Halomicronema hongdechloris showed that some cyanobacteria could utilize far-red light. The synthesis of Chl f (and Chl d) is part of an extensive acclimation process, far-red light photoacclimation (FaRLiP), which occurs in many cyanobacteria. Organisms performing FaRLiP contain a conserved set of 17 genes encoding paralogous subunits of the three major photosynthetic complexes. Far-red light photoacclimation leads to substantial remodelling of the photosynthetic apparatus and other changes in cellular metabolism through extensive changes in transcription. Far-red light photoacclimation appears to be controlled by a red/far-red photoreceptor, RfpA, as well as two response regulators (RfpB and RfpC), one of which is a DNA-binding protein. The remodelled photosynthetic complexes, including novel phycobiliproteins, absorb light above 700 nm and enable cells to grow in far-red light. A much simpler acclimation response, low-light photoacclimation (LoLiP), occurs in some cyanobacteria that contain the apcD4-apcB3-isiX cluster, which allows cells to grow under low light conditions.

    Topics: Acclimatization; Chlorophyll; Cyanobacteria; DNA-Binding Proteins; Energy Metabolism; Infrared Rays; Photoreceptors, Microbial; Photosynthesis; Photosystem I Protein Complex; Photosystem II Protein Complex; Phycobiliproteins; Phycobilisomes

2015
Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.
    Annual review of biochemistry, 2014, Volume: 83

    Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.

    Topics: Carbon-Oxygen Ligases; Chlorophyll; Chlorophyll A; Light; Lyases; Magnesium; Oxygen; Photosynthesis; Plant Physiological Phenomena; Protoporphyrins

2014

Other Studies

4 other study(ies) available for chlorophyll-d and chlorophyll-f

ArticleYear
Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light.
    Photosynthesis research, 2020, Volume: 143, Issue:1

    Some terrestrial cyanobacteria acclimate to and utilize far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis, a process known as far-red light photoacclimation (FaRLiP). A conserved, 20-gene FaRLiP cluster encodes core subunits of Photosystem I (PSI) and Photosystem II (PSII), five phycobiliprotein subunits of FRL-bicylindrical cores, and enzymes for synthesis of chlorophyll (Chl) f and possibly Chl d. Deletion mutants for each of the five apc genes of the FaRLiP cluster were constructed in Synechococcus sp. PCC 7335, and all had similar phenotypes. When the mutants were grown in white (WL) or red (RL) light, the cells closely resembled the wild-type (WT) strain grown under the same conditions. However, the WT and mutant strains were very different when grown under FRL. Mutants grown in FRL were unable to assemble FRL-bicylindrical cores, were essentially devoid of FRL-specific phycobiliproteins, but retained RL-type phycobilisomes and WL-PSII. The transcript levels for genes of the FaRLiP cluster in the mutants were similar to those in WT. Surprisingly, the Chl d contents of the mutant strains were greatly reduced (~ 60-99%) compared to WT and so were the levels of FRL-PSII. We infer that Chl d may be essential for the assembly of FRL-PSII, which does not accumulate to normal levels in the mutants. We further infer that the cysteine-rich subunits of FRL allophycocyanin may either directly participate in the synthesis of Chl d or that FRL bicylindrical cores stabilize FRL-PSII to prevent loss of Chl d.

    Topics: Chlorophyll; Gene Expression Regulation, Bacterial; Genes, Bacterial; Light; Models, Molecular; Multigene Family; Mutation; Phycobilisomes; Phycocyanin; Proteomics; Spectrometry, Fluorescence; Synechococcus

2020
Widespread occurrence and unexpected diversity of red-shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems.
    Environmental microbiology, 2019, Volume: 21, Issue:4

    Discovery of red-shifted chlorophyll d and f in cyanobacteria has opened up new avenues to estimate global carbon fixation driven by far-red light. Shaded habitats in humid subtropical forest ecosystems contain an increased proportion of far-red light components relative to residual white light. After an extensive survey of shaded ecosystems within subtropical forests, wide occurrence of red-shifted chlorophyll-producing cyanobacteria was demonstrated by isolated Chl f-producing and Chl d-containing cyanobacteria. Chl f-producing cyanobacteria were classified into the genera of Aphanocapsa and Chroococcidiopsis and two undescribed genera within Leptolyngbyaceae. Newly isolated Chl d-containing Acaryochloris sp. CCNUM4 showed the closest phylogenetic relationship with Acaryochloris species isolated from marine environments. Acaryochloris sp. CCNUM4 produced Chl d as major photopigment, and Chl f-producing cyanobacteria use Chl a under white light conditions but Chl a + f under far-red light conditions. Their habitats are widely distributed in subtropical forest ecosystems and varied from mosses on limestone to macrophyte and freshwater in the streams and ponds. This study presents a significant advance in the knowledge of distribution and diversity of red-shifted chlorophyll-producing cyanobacteria in terrestrial ecosystems. The results suggest that Chl f-producing and Chl d-containing cyanobacteria might be important primary producers in far-red light dominant niches worldwide.

    Topics: Biodiversity; Carbon Cycle; Chlorophyll; Cyanobacteria; Ecosystem; Forests; Humidity; Light; Phylogeny

2019
In vitro conversion of vinyl to formyl groups in naturally occurring chlorophylls.
    Scientific reports, 2014, Aug-14, Volume: 4

    The chemical structural differences distinguishing chlorophylls in oxygenic photosynthetic organisms are either formyl substitution (chlorophyll b, d, and f) or the degree of unsaturation (8-vinyl chlorophyll a and b) of a side chain of the macrocycle compared with chlorophyll a. We conducted an investigation of the conversion of vinyl to formyl groups among naturally occurring chlorophylls. We demonstrated the in vitro oxidative cleavage of vinyl side groups to yield formyl groups through the aid of a thiol-containing compound in aqueous reaction mixture at room temperature. Heme is required as a catalyst in aqueous solution but is not required in methanolic reaction mixture. The conversion of vinyl- to formyl- groups is independent of their position on the macrocycle, as we observed oxidative cleavages of both 3-vinyl and 8-vinyl side chains to yield formyl groups. Three new chlorophyll derivatives were synthesised using 8-vinyl chlorophyll a as substrate: 8-vinyl chlorophyll d, [8-formyl]-chlorophyll a, and [3,8-diformyl]-chlorophyll a. The structural and spectral properties will provide a signature that may aid in identification of the novel chlorophyll derivatives in natural systems. The ease of conversion of vinyl- to formyl- in chlorophylls demonstrated here has implications regarding the biosynthetic mechanism of chlorophyll d in vivo.

    Topics: Catalysis; Chlorophyll; Chlorophyll A; Formates; Heme; Mercaptoethanol; Photosynthesis; Prochlorococcus; Protoporphyrins; Vinyl Compounds

2014
Spectroscopic properties of chlorophyll f.
    The journal of physical chemistry. B, 2013, Sep-26, Volume: 117, Issue:38

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

    Topics: Acetone; Chlorophyll; Chlorophyll A; Cyanobacteria; Methanol; Spectrometry, Fluorescence; Temperature

2013