chlorophyll-c has been researched along with diadinoxanthin* in 5 studies
5 other study(ies) available for chlorophyll-c and diadinoxanthin
Article | Year |
---|---|
Structural basis for blue-green light harvesting and energy dissipation in diatoms.
Diatoms are abundant photosynthetic organisms in aquatic environments and contribute 40% of its primary productivity. An important factor that contributes to the success of diatoms is their fucoxanthin chlorophyll a/c-binding proteins (FCPs), which have exceptional light-harvesting and photoprotection capabilities. Here, we report the crystal structure of an FCP from the marine diatom Topics: Chlorophyll; Chlorophyll A; Chlorophyll Binding Proteins; Diatoms; Energy Transfer; Light; Photosynthesis; Protein Structure, Quaternary; Thylakoids; Xanthophylls | 2019 |
Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study.
Fucoxanthin chlorophyll (Chl) a/ c-binding proteins (FCPs) are unique light-harvesting antennas in diatoms. Recent time-resolved fluorescence analysis of photosystem I with FCP associated (PSI-FCPI) has mainly shown excitation energy transfer among Chls a from FCPI to PSI in tens of picoseconds. However, it remains unclear how each pigment, especially carotenoids and Chl c, in the FCPI is functionally related to the energy transfer in a femtosecond time range. Here, we reveal ultrafast excitation energy transfer mechanism in the PSI-FCPI preparations isolated from a diatom, Chaetoceros gracilis, by means of femtosecond time-resolved fluorescence spectroscopy with an upconversion system. Compared with the fluorescence lifetime components of PSI core-like complexes, the energy transfer of Chl c → Chl a in the FCPI was observed within hundreds of femtoseconds, and the energy in the FCPI was transferred to PSI in ∼2 ps. The comparative fluorescence analyses provide physical insights into the energy transfer machinery within FCPI and from FCPI to PSI. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Chlorophyll Binding Proteins; Diatoms; Energy Transfer; Fluorescence; Photosystem I Protein Complex; Spectrometry, Fluorescence; Xanthophylls | 2019 |
Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis.
The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean. Topics: Carrier Proteins; Chlorophyll; Chlorophyll A; Diatoms; Light; Light-Harvesting Protein Complexes; Photosystem II Protein Complex; Spectrometry, Fluorescence; Thylakoids; Xanthophylls | 2015 |
[Phytoplankton Light Absorption Properties During the Blooms in Adjacent Waters of the Changjiang Estuary].
Phytoplankton dominant species and their light absorption properties during the blooms occurred in August 2013 in adjacent waters of the Changjiang Estuary were analyzed. The results showed that phytoplankton blooms broke out in 10 out of 34 investigation stations, among which diatom blooms occurred in 6 stations while 3 stations were predominated by dinoflagellate. Phytoplankton absorption coefficients of both bloom and non-bloom waters exhibited large variations, with respective ranges of 0.199-0.832 m(-1) and 0.012-0.109 m(-1), while phytoplankton specific absorption coefficients spanned much narrower range, with the average values of bloom and non-bloom waters being 0.023 and 0.035 m2 x mg(-1), respectively. When transitioned from bloom to non-bloom waters, the proportion of phytoplankton with larger cell size lowered while that of smaller phytoplankton elevated, causing a less extent of package effect and thus higher specific absorption coefficients. Distinctive absorption spectra were observed between different types of bloom (such as diatom and dinoflagellate blooms) with similar phytoplankton cell size, mostly attributed to distinctive accessory pigment composition. The ratios of diadinoxanthin and chlorophyll-c2 concentrations to chlorophyll-a concentration in dinoflagellate blooms were higher than those in diatom blooms, which largely contributed to the shoulder peaks at 465 nm in dinoflagellate blooms. Topics: Chlorophyll; Chlorophyll A; Diatoms; Dinoflagellida; Estuaries; Eutrophication; Light; Phytoplankton; Xanthophylls | 2015 |
A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
In the present study we report that in the diatom Cyclotella meneghiniana the diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence (NPQ) is heterogeneous and consists of three different components. (i) A transient NPQ component that generates immediately upon illumination, depends on the transthylakoid proton gradient as well as on the light intensity, and is modulated by the initial diatoxanthin content of the cells. It is located in the antenna complexes of C. meneghiniana and is comparable with the transient NPQ observed in vascular plants. (ii) A steady-state NPQ component is observed during later stages of the high-light illumination and depends on the diatoxanthin content formed by the light-activated diadinoxanthin cycle. (iii) A fast relaxing NPQ component is seen upon a transition of high-light-illuminated cells to complete darkness. This component relaxes within a time frame of tens of seconds and its extent is correlated with the amount of diatoxanthin formed during the phase of actinic illumination. It cannot be observed in dithiothreitol-treated cells where the de-epoxidation of diadinoxanthin to diatoxanthin is suppressed. The fast relaxing component can be interpreted as a relaxation of part of the steady-state NPQ. The different diatoxanthin-dependent components are characterized by different quenching efficiencies of diatoxanthin. Diatoxanthin involved in the transient NPQ exhibits a 2-fold higher quenching efficiency compared with diatoxanthin participating in the steady-state NPQ. It is proposed that the different quenching efficiencies of diatoxanthin are caused by the existence of different diatoxanthin pools within the antenna system of C. meneghiniana. Topics: beta Carotene; Chlorophyll; Diatoms; Fluorescence; Light; Photosynthesis; Signal Transduction; Time Factors; Xanthophylls | 2008 |