chlorophyll-c and acrylic-acid

chlorophyll-c has been researched along with acrylic-acid* in 3 studies

Other Studies

3 other study(ies) available for chlorophyll-c and acrylic-acid

ArticleYear
Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a.
    Photosynthesis research, 2016, Volume: 127, Issue:3

    Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.

    Topics: Acrylates; Biosynthetic Pathways; Chlorophyll; Chlorophyll A; Optical Phenomena; Spectrometry, Fluorescence

2016
Pheophytinization kinetics of chlorophyll c under weakly acidic conditions: effects of acrylic acid residue at the 17-position.
    Bioorganic & medicinal chemistry, 2013, Nov-15, Volume: 21, Issue:22

    Pheophytinization of chlorophyll (Chl) c1, which was isolated from the diatom Chaetoceros gracilis, was kinetically analyzed under weakly acidic conditions, and was compared with that of protochlorophyllide (PChlide) a and chlorophyllide (Chlide) a. Chl c1 possessing a trans-acrylic acid residue at the 17-position exhibited slower pheophytinization kinetics than PChlide a and Chlide a, both of which possessed a propionic acid residue at the same position. The difference in pheophytinization properties between Chl c1 and (P)Chlide a was ascribable to the electronegativity of the 17-substituent in Chl c1 larger than that of (P)Chlide a due to the C17(1)-C17(2) double bond with the conjugated 17(2)-carboxy group in Chl c1. Demetalation kinetics of PChlide a was slower than that of Chlide a, which originated from the effect of the π-macrocyclic structures.

    Topics: Acrylates; Chlorophyll; Chlorophyllides; Diatoms; Isomerism; Kinetics; Protochlorophyllide

2013
Stereochemical determination of the unique acrylate moiety at the 17-position in chlorophylls-c from a diatom Chaetoseros calcitrans and its effect upon electronic absorption properties.
    Organic & biomolecular chemistry, 2009, May-21, Volume: 7, Issue:10

    Chlorophyll (Chl)-c1 and Chl-c2 were extracted from a commercially available diatom Chaetoseros calcitrans, and the former (8-ethyl) and the latter (8-vinyl) were efficiently separated by reverse-phase HPLC using a polymeric octadecylsilyl column to afford analytically pure compounds in an amount adequate for further chemical modification. The conformation of the unique acrylate moiety at the 17-position of isolated Chls-c in THF was unambiguously determined to be "cisoid" around the C17-C17(1) bond using 1H-1H NOE correlations: C17(1)=C17(2) was on the same side as C17=C18. Interestingly, correlations originating from the "transoid" conformer could not be observed under the present NMR conditions, indicating that the rotation of the acrylate was considerably restricted. To elucidate the function of the rigid acrylate in Chls-c, we examined their electronic absorption properties using two synthetic types of esters possessing a porphyrin pi-system: acrylate-type (17-CH=CH-COOR) prepared by esterification of natural Chl-c1 and Chl-c2, and propionate-type (17-CH2-CH2-COOR) by 17,18-oxidation of natural Chl-a and its 8-vinyl analog. The Soret absorption bands at around 450 nm of the acrylate-type were red-shifted and broadened more than those of the propionate-type. Consequently, the unique acrylate in Chls-c serves as an aid for expanding the absorption region around 400-500 nm in order to capture intense irradiation from the sun for photosynthesis.

    Topics: Acrylates; Chlorophyll; Diatoms; Electrons; Models, Molecular; Molecular Structure; Stereoisomerism

2009