chlorophyll-b has been researched along with tert-butylamine* in 1 studies
1 other study(ies) available for chlorophyll-b and tert-butylamine
Article | Year |
---|---|
Effects of molecular structures on reduction properties of formyl groups in chlorophylls and pheophytins prepared from oxygenic photosynthetic organisms.
Reduction of the 7-formyl groups in chlorophyll (Chl) b and its demetalated compound pheophytin (Phe) b was kinetically analyzed by using tert-butylamine-borane complex (t-BuNH(2)·BH(3)), and was compared with that of the 3-formyl groups in Chl d and Phe d. Reduction kinetics of the 7-formyl group in Chl b was similar to that in Phe b in dichloromethane containing 5mM t-BuNH(2)·BH(3). Little difference of the reduction kinetics of the 7-formyl groups between Chl b and Phe b was in sharp contrast to the reduction kinetics of the 3-formyl groups in Chl d and Phe d: the 3-formyl group in Phe d was reduced 5.3-fold faster than that in Chl d. The 7-formyl groups in Chl b and Phe b were reduced more slowly than the 3-formyl groups in Chl d and Phe d, respectively. The difference of the reactivity between the 3- and 7-formyl groups was in line with (13)C NMR measurements of chlorophyllous pigments, in which the chemical shifts of carbon atoms in the 7-formyl groups of Chl b and Phe b were high-field shifted compared with those in the 3-formyl groups of Chl d and Phe d, respectively. These indicate that the 7-formyl groups in chlorophyllous pigments were less reactive for reduction to the corresponding hydroxymethyl groups than the 3-formyl groups due to the difference in electronic states of the formyl groups in the A- and B-rings of the chlorin macrocycle. Topics: Boranes; Butylamines; Chlorophyll; Cyanobacteria; Formates; Kinetics; Molecular Conformation; Oxidation-Reduction; Pheophytins; Spinacia oleracea | 2011 |