chlorophyll-b has been researched along with metolachlor* in 2 studies
2 other study(ies) available for chlorophyll-b and metolachlor
Article | Year |
---|---|
A novel function of sanshools: the alleviation of injury from metolachlor in rice seedlings.
Szechuan peppers are extensively used as a spice and in traditional medicine in Asia, primarily because of its active compounds, sanshools (S). However, there is only limited mention in agriculture, and there are no papers reporting its use as an herbicide safener. In this study, we provide the first evidence that S can effectively alleviate rice-seedling injury from metolachlor (M). We observed that the M-treated (0.25 μM) rice seedlings, which were 56.0%, 66.0%, and 57.0% of the non-treated control in shoot height, root length, and fresh biomass, respectively, were recovered by S to 93.1%, 97.6%, and 94.8%, respectively. The emergence rate was enhanced to over 80% in the M+S treatment, whereas it was below 60% in the M treatment. This M+S mixture elevated the rice-seedling root activity to higher than 87.0% of the value for the non-treated control. The activity of glutathione transferases in the combined treatments approximately doubles that of the M treatment and quadruples that of the non-treated controls. This effect was positively correlated with the induced expression of OsGSTU3. Our results suggest that S may represent a new group of safeners and enable the possibility of using these compounds for improving plant production or protecting rice from the phytotoxicity of metolachlor. Topics: Acetamides; Amides; Chlorophyll; Chlorophyll A; Gene Expression Regulation, Plant; Glutathione Transferase; Herbicides; Oryza; Plant Roots; Plant Shoots; Protective Agents; Seedlings | 2014 |
Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa.
The toxicity of the chiral herbicides rac-metolachlor and S-metolachlor to Chlorella pyrenoidosa was determined and compared in this study, based on four different test endpoints: the growth inhibition rate, the chlorophyll a and chlorophyll b concentration, the catalase activity, and the ultrastructural morphology of cells. The 24, 48, 72, and 96h EC(50) values of rac-metolachlor were 0.196, 0.241, 0.177 and 0.152mgL(-1), respectively; these values were higher than those of S-metolachlor, which were 0.116, 0.106, 0.081 and 0.068mgL(-1), respectively. This indicates that S-metolachlor was more toxic to C. pyrenoidosa than rac-metolachlor. The Chla and Chlb concentration of C. pyrenoidosa treated by rac-metolachlor was higher than that treated by S-metolachlor. In general, the catalase activity of C. pyrenoidosa treated by S-metolachlor was higher than that exposed to rac-metolachlor, and catalase activity was inhibited at high concentrations of both herbicides. The ultrastructural morphology of cells grown in the two herbicides was observed by transmission electron microscopy. The cell wall separated from the cell membrane, accumulated starch granules were observed in the chloroplast, and some lipid droplets and unknown electron-opaque deposits were also observed in the cytoplasm. The mechanism of the toxicity of rac- and S-metolachlor toxicity to C. pyrenoidosa was explored, and the enantioselective toxicity of rac- and S-metolachlor to C. pyrenoidosa was determined. These results will help to develop an understanding of the biologically mediated environmental processes of rac- and S-metolachlor. Topics: Acetamides; Catalase; Cell Growth Processes; Chlorella; Chlorophyll; Chlorophyll A; Herbicides; Stereoisomerism | 2009 |