chlorophyll-b and imidazole

chlorophyll-b has been researched along with imidazole* in 1 studies

Other Studies

1 other study(ies) available for chlorophyll-b and imidazole

ArticleYear
Synthetic analogues of the histidine-chlorophyll complex: a NMR study to mimic structural features of the photosynthetic reaction center and the light-harvesting complex.
    Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry, 2004, Volume: 9, Issue:1

    Mg(II)-porphyrin-ligand and (bacterio)chlorophyl-ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. (1)H, (13)C and (15)N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9-5.2 ppm (1)H, 0.2-5.5 ppm (13)C and 2.1-27.2 ppm (15)N coordination shifts were measured for selectively labeled [1,3-(15)N]-Im, [1,3-(15)N,2-(13)C]-Im and [1,3-(15)N,1,2-(13)C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the (1)H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a-histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex.

    Topics: Bacteriochlorophyll A; Bacteriochlorophylls; Carbon Isotopes; Chlorophyll; Chlorophyll A; Histidine; Imidazoles; Isotope Labeling; Light-Harvesting Protein Complexes; Magnesium; Magnetic Resonance Spectroscopy; Molecular Structure; Nitrogen Isotopes; Photosynthesis; Rhodobacter sphaeroides; Spectrophotometry, Infrared; Spinacia oleracea

2004