chlorophyll-b has been researched along with chlorophyll-d* in 8 studies
2 review(s) available for chlorophyll-b and chlorophyll-d
Article | Year |
---|---|
Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms. Topics: Carbon-Oxygen Ligases; Chlorophyll; Chlorophyll A; Light; Lyases; Magnesium; Oxygen; Photosynthesis; Plant Physiological Phenomena; Protoporphyrins | 2014 |
Expanding the solar spectrum used by photosynthesis.
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms. Topics: Chlorophyll; Chlorophyll A; Cyanobacteria; Oxygen; Photosynthesis; Plants; Sunlight | 2011 |
6 other study(ies) available for chlorophyll-b and chlorophyll-d
Article | Year |
---|---|
In vitro conversion of vinyl to formyl groups in naturally occurring chlorophylls.
The chemical structural differences distinguishing chlorophylls in oxygenic photosynthetic organisms are either formyl substitution (chlorophyll b, d, and f) or the degree of unsaturation (8-vinyl chlorophyll a and b) of a side chain of the macrocycle compared with chlorophyll a. We conducted an investigation of the conversion of vinyl to formyl groups among naturally occurring chlorophylls. We demonstrated the in vitro oxidative cleavage of vinyl side groups to yield formyl groups through the aid of a thiol-containing compound in aqueous reaction mixture at room temperature. Heme is required as a catalyst in aqueous solution but is not required in methanolic reaction mixture. The conversion of vinyl- to formyl- groups is independent of their position on the macrocycle, as we observed oxidative cleavages of both 3-vinyl and 8-vinyl side chains to yield formyl groups. Three new chlorophyll derivatives were synthesised using 8-vinyl chlorophyll a as substrate: 8-vinyl chlorophyll d, [8-formyl]-chlorophyll a, and [3,8-diformyl]-chlorophyll a. The structural and spectral properties will provide a signature that may aid in identification of the novel chlorophyll derivatives in natural systems. The ease of conversion of vinyl- to formyl- in chlorophylls demonstrated here has implications regarding the biosynthetic mechanism of chlorophyll d in vivo. Topics: Catalysis; Chlorophyll; Chlorophyll A; Formates; Heme; Mercaptoethanol; Photosynthesis; Prochlorococcus; Protoporphyrins; Vinyl Compounds | 2014 |
Effects of molecular structures on reduction properties of formyl groups in chlorophylls and pheophytins prepared from oxygenic photosynthetic organisms.
Reduction of the 7-formyl groups in chlorophyll (Chl) b and its demetalated compound pheophytin (Phe) b was kinetically analyzed by using tert-butylamine-borane complex (t-BuNH(2)·BH(3)), and was compared with that of the 3-formyl groups in Chl d and Phe d. Reduction kinetics of the 7-formyl group in Chl b was similar to that in Phe b in dichloromethane containing 5mM t-BuNH(2)·BH(3). Little difference of the reduction kinetics of the 7-formyl groups between Chl b and Phe b was in sharp contrast to the reduction kinetics of the 3-formyl groups in Chl d and Phe d: the 3-formyl group in Phe d was reduced 5.3-fold faster than that in Chl d. The 7-formyl groups in Chl b and Phe b were reduced more slowly than the 3-formyl groups in Chl d and Phe d, respectively. The difference of the reactivity between the 3- and 7-formyl groups was in line with (13)C NMR measurements of chlorophyllous pigments, in which the chemical shifts of carbon atoms in the 7-formyl groups of Chl b and Phe b were high-field shifted compared with those in the 3-formyl groups of Chl d and Phe d, respectively. These indicate that the 7-formyl groups in chlorophyllous pigments were less reactive for reduction to the corresponding hydroxymethyl groups than the 3-formyl groups due to the difference in electronic states of the formyl groups in the A- and B-rings of the chlorin macrocycle. Topics: Boranes; Butylamines; Chlorophyll; Cyanobacteria; Formates; Kinetics; Molecular Conformation; Oxidation-Reduction; Pheophytins; Spinacia oleracea | 2011 |
X-ray structures of the peridinin-chlorophyll-protein reconstituted with different chlorophylls.
The peridinin-chlorophyll a-protein (PCP) from dinoflagellates is a soluble light harvesting antenna which gathers incoming photons mainly by the carotenoid peridinin. In PCPs reconstituted with different chlorophylls, the peridinin to chlorophyll energy transfer rates are well predicted by a Förster-like theory, but only if the pigment arrangements are identical in all PCPs. We have determined the X-ray structures of PCPs reconstituted with Chlorophyll-b (Chl-b), Chlorophyll-d (Chl-d) and Bacteriochlorophyll-a (BChl-a) to resolutions Topics: Carotenoids; Chlorophyll; Crystallography, X-Ray; Molecular Structure; Protein Folding; Protein Structure, Secondary; Protozoan Proteins | 2010 |
Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin pi-macrocycle.
Demetalation kinetics of natural chlorophyll (Chl) d purified from Acaryochloris marina was first studied and compared with those of Chls a and b. The demetalation rate constant of Chl d, which possessed a formyl group at the 3-position, was five-fold smaller than that of Chl a possessing a vinyl group at the same position in aqueous acetone at the proton concentration of 1.2 x 10(-3) M at 25 degrees C. In contrast, the demetalation rate constant of Chl b possessing a formyl group at the 7-position was 26 times smaller than that of Chl a. The activation energy of demetalation reaction of Chl d was larger than that of Chl a, but smaller than that of Chl b. These indicate that the substitution effect of 3-formyl group on the acidic removal of central magnesium in Chls was smaller than that of 7-formyl group. Topics: Chlorophyll; Chlorophyll A; Cyanobacteria; Kinetics; Magnesium; Photosynthesis; Porphyrins; Spectrophotometry | 2009 |
Redox potential of chlorophyll d in vitro.
Chlorophyll (Chl) d is a major chlorophyll in a novel oxygenic prokaryote Acaryochloris marina. Here we first report the redox potential of Chl d in vitro. The oxidation potential of Chl d was +0.88 V vs. SHE in acetonitrile; the value was higher than that of Chl a (+0.81 V) and lower than that of Chl b (+0.94 V). The oxidation potential order, Chl b>Chl d>Chl a, can be explained by inductive effect of substituent groups on the conjugated pi-electron system on the macrocycle. Corresponding pheophytins showed the same order; Phe b (+1.25 V)>Phe d (+1.21 V)>Phe a (+1.14 V), but the values were significantly higher than those of Chls, which are rationalized in terms of an electron density decrease in the pi-system by the replacement of magnesium with more electronegative hydrogen. Consequently, oxidation potential of Chl a was found to be the lowest among Chls and Phes. The results will help us to broaden our views on photosystems in A. marina. Topics: Acetonitriles; Chlorophyll; Chlorophyll A; Cyanobacteria; Dimethylformamide; Electrochemistry; In Vitro Techniques; Models, Chemical; Molecular Structure; Oxidation-Reduction; Petroselinum; Pheophytins; Solvents | 2007 |
Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems.
pcb genes, encoding proteins binding light-harvesting chlorophylls, were cloned and sequenced from the Chl d-containing cyanobacterium, Acaryochloris marina, and the Chl b-containing cyanobacterium, Prochloron didemni. Both organisms contained two tandem pcb genes. Peptide fingerprinting confirmed the expression of one of the A. marina pcb genes. Phylogenetic tree reconstruction using distance-matrix and maximum-likelihood methods indicated a single origin of the pcb gene family, whether occurring in Chl b-containing or Chl d-containing organisms. This may indicate widespread lateral transfer of the Pcb protein-based light-harvesting system. Topics: Biological Evolution; Chlorophyll; Cyanobacteria; DNA, Bacterial; Light-Harvesting Protein Complexes; Molecular Sequence Data; Phylogeny; Prochloron; Protein Binding | 2005 |