chlorophyll-a and tolyporphin

chlorophyll-a has been researched along with tolyporphin* in 2 studies

Reviews

1 review(s) available for chlorophyll-a and tolyporphin

ArticleYear
Total synthesis campaigns toward chlorophylls and related natural hydroporphyrins - diverse macrocycles, unrealized opportunities.
    Natural product reports, 2018, 09-19, Volume: 35, Issue:9

    Covering: up to 2018 Chlorophylls, bacteriochlorophylls and related hydroporphyrins constitute invaluable natural products but have largely remained outside the scope of viable syntheses. The campaign toward chlorophyll a by Woodward and coworkers is a deservedly celebrated landmark in organic synthesis yet the route entailed 49 steps, relied on semisynthetic replenishment of advanced intermediates, and then pointed to (but did not implement) uncertain literature procedures for the final transformations. Indeed, the full synthesis at any scale of any (bacterio)chlorophylls - conversion of small-molecule starting materials to the product - has never been accomplished. Herein, the reported syntheses of (±)-bonellin dimethyl ester (0.93 mg) and tolyporphin A O,O-diacetate (0.38 mg), as well as the never-fully traversed route to chlorophyll a, have been evaluated in a quantitative manner. Bonellin and tolyporphin A are naturally occurring chlorin and bacteriochlorin macrocycles, respectively, that lack the characteristic fifth ring of (bacterio)chlorophylls. A practical assessment is provided by the cumulative reaction mass efficiency (cRME) of the entire synthetic process. The cRME for the route to chlorophyll a would be 4.3 × 10-9 (230 kg of all reactants and reagents in total would yield 1.0 mg of chlorophyll a), whereas that for (±)-bonellin dimethyl ester or tolyporphin A O,O-diacetate is approximately 6.4 × 10-4 or 3.6 × 10-5, respectively. Comparison of the three syntheses reveals insights for designing hydroporphyrin syntheses. Development of syntheses with cRME > 10-5 (if not 10-4), as required to obtain 10 mg quantities of hydroporphyrin for diverse physicochemical, biochemical and medicinal chemistry studies, necessitates significant further advances in tetrapyrrole chemistry.

    Topics: Chlorophyll; Macrocyclic Compounds; Molecular Structure; Porphyrins

2018

Other Studies

1 other study(ies) available for chlorophyll-a and tolyporphin

ArticleYear
Quantitation of Tolyporphins, Diverse Tetrapyrrole Secondary Metabolites with Chlorophyll-Like Absorption, from a Filamentous Cyanobacterium-Microbial Community.
    Phytochemical analysis : PCA, 2018, Volume: 29, Issue:2

    Tolyporphins are unusual tetrapyrrole macrocycles produced by a non-axenic filamentous cyanobacterium (HT-58-2). Tolyporphins A-J, L, and M share a common dioxobacteriochlorin core, differ in peripheral substituents, and exhibit absorption spectra that overlap that of the dominant cyanobacterial pigment, chlorophyll a. Identification and accurate quantitation of the various tolyporphins in these chlorophyll-rich samples presents challenges.. To develop methods for the quantitative determination of tolyporphins produced under various growth conditions relative to that of chlorophyll a.. Chromatographic fractionation of large-scale (440 L) cultures afforded isolated individual tolyporphins. Lipophilic extraction of small-scale (25 mL) cultures, HPLC separation with an internal standard, and absorption detection enabled quantitation of tolyporphin A and chlorophyll a, and by inference the amounts of tolyporphins A-M. Absorption spectroscopy with multicomponent analysis of lipophilic extracts (2 mL cultures) afforded the ratio of all tolyporphins to chlorophyll a. The reported absorption spectral data for the various tolyporphins required re-evaluation for quantitative purposes.. The amount of tolyporphin A after 50 days of illumination ranged from 0.13 nmol/mg dry cells (media containing nitrate) to 1.12 nmol/mg (without nitrate), with maximum 0.23 times that of chlorophyll a. Under soluble-nitrogen deprivation after 35-50 days, tolyporphin A represents 1/3-1/2 of the total tolyporphins, and the total amount of tolyporphins is up to 1.8-fold that of chlorophyll a.. The quantitative methods developed herein should facilitate investigation of the biosynthesis of tolyporphins (and other tetrapyrroles) as well as examination of other strains for production of tolyporphins. Copyright © 2017 John Wiley & Sons, Ltd.

    Topics: Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Cyanobacteria; Porphyrins; Reference Standards; Reproducibility of Results; Spectrum Analysis; Tetrapyrroles

2018