chlorophyll-a and theanine

chlorophyll-a has been researched along with theanine* in 7 studies

Other Studies

7 other study(ies) available for chlorophyll-a and theanine

ArticleYear
[The albino mechanism of a new theanine-rich tea cultivar 'Fuhuang 2'].
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 2022, Oct-25, Volume: 38, Issue:10

    To explore the mechanism of tea albino variation and high theanine formation, 'Fuyun 6' and a new theanine-rich tea cultivar 'Fuhuang 2' were as materials in this study, pigment content, metabolome and transcriptome of the two cultivars were analyzed by ultramicroelectron microscopy, widely targeted metabolomics, targeted metabolomics and transcriptomics. The results showed that five catechins, theobromine, caffeine, and 20 free amino acids, including theanine, glutamine, arginine, etc., were identified by targeted metabolomics. The amino acid content of 'Fuhuang 2' was significantly higher than that of 'Fuyun 6', and the theanine content was as high as 57.37 mg/g in 'Fuhuang 2'. The ultrastructure of leaves showed that the chloroplast cell structure of 'Fuhuang 2' was fuzzy, most of the grana lamellae were arranged in disorder, with large gaps, and the thylakoids were filiform. The determination of pigments showed that compared with 'Fuyun 6', the contents of chlorophyll A and B, carotenoids, flavonoids and other pigments of 'Fuhuang 2' decreased significantly, some important pigment-related-genes, such as chlorophyllase (

    Topics: Amino Acids; Camellia sinensis; Chlorophyll; Chlorophyll A; Flavonoids; Mixed Function Oxygenases; Nitrogen; Plant Leaves; Plant Proteins; Tea; Transcriptome

2022
Foliar application of glycinebetaine and Zn fertilizer improves both the apparent and functional qualities of albino tea [
    Food & function, 2021, Oct-04, Volume: 12, Issue:19

    With Zn deficiency increasing in the global population, functional plant food (including tea) can help to fill the nutrition gap that the main crops cannot meet. Glycinebetaine (GB), an important bioactive substance with a wide range of natural sources, has received limited attention towards its effects on Zn biofortification and the quality of tea. The Zn enrichment and metabolite responses of albino tea [cv. White leaf No. 1 (WL-1)] to the foliar application of GB, Zn, and their combination (Zn + GB) were investigated in a field experiment. The result indicated that the 100-buds weight, total N, Zn, Thea, and total amino acid content in the young leaves of WL-1 with Zn2 + GB2 treatment were significantly increased, whereas the Chla contents were decreased (

    Topics: Betaine; Caffeine; Camellia sinensis; Carotenoids; Catechin; Chlorophyll; Fertilizers; Glutamates; Metabolomics; Nitrogen; Photosynthesis; Plant Leaves; Tea; Zinc

2021
Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation.
    Journal of the science of food and agriculture, 2018, Volume: 98, Issue:15

    Use of covering cultivation to shade tea (Camellia sinensis L.) trees to produce high-quality, high-priced green tea has recently increased in Japan. Knowledge of shading effects on morphological and color traits and on chemical components of new tea shoots is important for product quality and productivity. We assessed these traits of tea shoots and their relationships under covering cultivation of various radiation intensities.. Leaf thickness, leaf mass per area, and leaf density of new tea leaves were smaller under covering culture than under open-field culture. SPAD values and chlorophyll contents were larger under covering culture than under open culture. The derived exponential equation for estimating chlorophyll contents from SPAD values was improved by considering leaf thickness. Covering culture decreased epicatechin and epigallocatechin contents, and increased theanine and caffeine contents. Principal component analysis on shoot and leaf traits indicated that leaf mass per area, chlorophyll, epicatechin, and epigallocatechin contents were strongly associated with shading effects.. The morphological traits, color traits, and chemical components of new tea shoots and leaves varied depending on radiation intensity, shoot growth, and cropping season. These findings are useful for covering cultivation with high quality and high productivity in tea gardens. © 2018 Society of Chemical Industry.

    Topics: Caffeine; Camellia sinensis; Catechin; Chlorophyll; Color; Crop Production; Glutamates; Japan; Phenotype; Plant Leaves; Seasons; Tea

2018
Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading.
    BMC plant biology, 2018, Oct-12, Volume: 18, Issue:1

    Tea is the most popular nonalcoholic beverage worldwide for its pleasant characteristics and healthful properties. Catechins, theanine and caffeine are the major natural products in tea buds and leaves that determine tea qualities such as infusion colors, tastes and fragrances, as well as their health benefits. Shading is a traditional and effective practice to modify natural product accumulation and to enhance the tea quality in tea plantation. However, the mechanism underlying the shading effects is not fully understood. This study aims to explore the regulation of flavonoid biosynthesis in Camellia sinensis under shading by using both metabolomic and transcriptional analyses.. While shading enhanced chlorophyll accumulation, major catechins, including C, EC, GC and EGC, decreased significantly in tea buds throughout the whole shading period. The reduction of catechins and flavonols were consistent with the simultaneous down-regulation of biosynthetic genes and TFs associated with flavonoid biosynthesis. Of 16 genes involved in the flavonoid biosynthetic pathway, F3'H and FLS significantly decreased throughout shading while the others (PAL, CHSs, DFR, ANS, ANR and LAR, etc.) temporally decreased in early or late shading stages. Gene co-expression cluster analysis suggested that a number of photoreceptors and potential genes involved in UV-B signal transductions (UVR8_L, HY5, COP1 and RUP1/2) showed decreasing expression patterns consistent with structural genes (F3'H, FLS, ANS, ANR, LAR, DFR and CHSs) and potential TFs (MYB4, MYB12, MYB14 and MYB111) involved in flavonoid biosynthesis, when compared with genes in the UV-A/blue and red/far-red light signal transductions. The KEGG enrichment and matrix correlation analyses also attributed the regulation of catechin biosynthesis to the UVR8-mediated signal transduction pathway. Further UV-B treatment in the controlled environment confirmed UV-B induction on flavonols and EGCG accumulation in tea leaves.. We proposed that catechin biosynthesis in C. sinensis leaves is predominantly regulated by UV through the UVR8-mediated signal transduction pathway to MYB12/MYB4 downstream effectors, to modulate flavonoid accumulation. Our study provides new insights into our understanding of regulatory mechanisms for shading-enhanced tea quality.

    Topics: Biosynthetic Pathways; Caffeine; Camellia sinensis; Catechin; Chlorophyll; Flavonoids; Gene Expression Profiling; Glutamates; Light; Metabolome; Metabolomics; Plant Leaves; Plant Proteins; Signal Transduction; Tea; Transcriptome

2018
Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes.
    Journal of proteomics, 2016, Jan-01, Volume: 130

    To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.

    Topics: Amino Acids; Camellia sinensis; Carotenoids; Catechin; Chlorophyll; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Glutamates; Metabolic Networks and Pathways; Microscopy, Electron, Transmission; Oligonucleotide Array Sequence Analysis; Phenotype; Plant Leaves; Plant Proteins; Proteome; Proteomics; Tea; Transcriptome

2016
Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).
    BMC plant biology, 2016, 09-08, Volume: 16, Issue:1

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized.. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants.. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

    Topics: Biosynthetic Pathways; Camellia sinensis; Carotenoids; Chlorophyll; Gene Expression Profiling; Gene Expression Regulation, Plant; Glutamates; Plant Leaves; Plant Proteins

2016
Changes in the composition of raw tea leaves from the Korean Yabukida plant during high-temperature processing to pan-fried Kamairi-cha green tea.
    Journal of food science, 2009, Volume: 74, Issue:5

    To develop a better understanding of compositional changes occurring during the production of commercial teas, we determined by high-performance liquid chromatography (HPLC) changes in ingredient levels during each of several manufacturing steps used to produce Kamairi-cha, a premium green tea. Kamairi-cha uses pan-frying instead of the usual blanching technique to inactivate the enzymes responsible for producing traditional black tea. The resulting tea lacks the characteristic bitterness of green tea, producing a green tea that is described as sweet tasting. The processing steps used to produce this pan-fried tea were as follows: 1st roasting, 1st rolling, 2nd roasting, 2nd rolling, 1st firing, and 2nd firing. The results show that during production at temperatures up to 300 degrees C, raw leaves lost (in percent) 97.3 water, 94 two chlorophylls, 14.3 seven catechins, and 2.75 caffeine. A separate analysis showed that the final product contained 21.67 mg/g dry wt of the biologically active amino acid theanine. The results of this 1st report on changes in individual catechins and other tea ingredients in tea leaves during pan-frying make it possible to select production conditions that maximize levels of beneficial tea ingredients. The possible significance of the results for the human diet is discussed.

    Topics: Alkaloids; Caffeine; Catechin; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Food Handling; Glutamates; Hot Temperature; Korea; Plant Leaves; Tea; Water

2009