chlorophyll-a and tartaric-acid

chlorophyll-a has been researched along with tartaric-acid* in 4 studies

Other Studies

4 other study(ies) available for chlorophyll-a and tartaric-acid

ArticleYear
Tartaric acid soil-amendment increases phytoextraction potential through root to shoot transfer of lead in turnip.
    Chemosphere, 2022, Volume: 296

    The phytoextraction potential of turnip and comparative effectiveness of three different organic ligands towards removal of lead (Pb) was investigated under field conditions. The 20 d old turnip seedlings were exposed to different Pb levels (0.0218, 2.42 and 4.83 mM Pb) spiked in the soil. After 10 d of Pb application, the soil was spiked with 2.4 mM concentration of different chelates viz. ethylenediaminetetraacetic acid (EDTA), citric acid (CA) and tartaric acid (TA). The 60 d old plants were harvested for growth analyses and determination of photosynthetic pigments, while Pb-concentration in different plant parts was determined from 60 and 90 d old plants. Yield attributes were recorded at the harvesting stage (HS, 90 d old plants). No suppression (rather a stimulation) in the root and shoot growth was evident upon Pb exposure whereas, a reduction in the chlorophyll content occurred at 4.83 mM Pb level. Soil amendment with TA improved chlorophyll contents irrespective of Pb levels while the effect of CA and EDTA was differential. A reduction in the root length while an increase in its diameter was recorded particularly at 4.83 mM Pb stress in 90 d old plants. The turnip retained maximum Pb-fraction in the roots at early growth stages, while EDTA application further increased its retention in root at 4.83 mM Pb regime. Nonetheless, only TA amendment promoted the transfer of Pb to shoot (∼30%) irrespective of Pb regimes. At the HS, application of both TA and EDTA caused substantial uptake of Pb in the root while the maximum shoot Pb-fraction was recorded again due to TA application, particularly at 4.83 mM Pb level. Above all, TA was identified as the most effective chelate that mobilized Pb from root to shoot leading to better growth possibly due to dilution effect, and thus enhanced phytoextraction efficiency in turnip.

    Topics: Biodegradation, Environmental; Brassica napus; Chlorophyll; Citric Acid; Edetic Acid; Lead; Soil; Soil Pollutants; Tartrates

2022
The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress.
    Ecotoxicology and environmental safety, 2020, Jan-15, Volume: 187

    We studied the effects of three organic acids (citric acid, tartaric acid and malic acid) on the biomass, photosynthetic pigment content and photosynthetic parameters of Salix variegata under Cd stress and observed the ultrastructure of mesophyll cells in each treatment. Cd stress significantly reduced photosynthesis by reducing the content of pigments and disrupting chloroplast structure, which consequently decreased the biomass. However, respective addition of three organic acids greatly increased the biomass of S. variegata under Cd stress. Among them, the effect of malic acid or tartaric acid on shoot and total biomass accumulation was greater than that of citric acid. The alleviation of biomass probably related with the photosynthetic process. Results revealed that treatment with each organic acid enhanced the net photosynthesis rate under Cd stress. Malic acid promoted plant growth and biomass by increasing the chlorophyll content and mitigating damage to the photosynthetic apparatus resulting from Cd stress. Tartaric acid had little impact on the photosynthetic pigment content, but it was important in mitigating the ultrastructural damage of plants caused by Cd. Addition of citric acid significantly increased the carotenoid as well as the number and volume of chloroplasts in mesophyll cells, while the mitigation of structural damage in the photosynthetic apparatus was weaker than that in tartaric acid or malic acid treatment. It is concluded that application of tartaric acid or malic acid is effective in increasing the growth potential of S. variegata under Cd stress and thus can be a promising approach for the phytoremediation of Cd-contaminated soil.

    Topics: Biodegradation, Environmental; Biological Availability; Biomass; Cadmium; Chlorophyll; Chloroplasts; Malates; Photosynthesis; Salix; Soil Pollutants; Tartrates

2020
Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.
    Plant physiology, 2016, Volume: 170, Issue:3

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.

    Topics: Carbohydrate Metabolism; Carotenoids; Chlorophyll; Fruit; Genes, Plant; Malates; Metabolic Networks and Pathways; Microclimate; Models, Biological; Plant Leaves; Tartrates; Terpenes; Vitis; Wine; Xanthophylls

2016
Quality parameters and antioxidant properties in organic and conventionally grown broccoli after pre-storage hot water treatment.
    Journal of the science of food and agriculture, 2013, Mar-30, Volume: 93, Issue:5

    Demand for broccoli has increased due to its high content of bioactive compounds. However, broccoli is a perishable commodity with a short shelf life mainly due to dehydration, yellowing and losses of bioactive compounds. Thus, efficient treatments to preserve broccoli quality are needed.. The effect of heat treatment on senescence and antioxidant compounds evolution during storage at 20 °C was evaluated in organic and conventionally grown broccoli. Senescence evolved quickly as manifested by floral head yellowing, which was higher in conventional than in organic broccolis, but senescence was significantly delayed by heat treatment. All organic acids, including ascorbic acid, were found at higher concentrations in organic than in conventional broccoli at harvest but decreased during storage in all broccolis. Phenolic concentration and antioxidant activity (in both hydrophilic and lipophilic fractions) also decreased during storage, although these decreases were higher in conventional than in organic broccolis, and no differences were found attributable to heat treatment.. Heat treatment was effective in delaying broccoli senescence, manifested by chlorophyll retention. In addition, organic broccoli maintained higher concentrations of bioactive compounds (ascorbic acid and phenolics) and antioxidant potential during storage than conventional broccoli, with higher potential health beneficial effects.

    Topics: Antioxidants; Ascorbic Acid; Brassica; Chlorophyll; Flowering Tops; Food Preservation; Food Quality; Food Storage; Food, Organic; Hot Temperature; Hydrophobic and Hydrophilic Interactions; Malates; Phenols; Pigments, Biological; Plant Stems; Spain; Tartrates; Time Factors

2013