chlorophyll-a has been researched along with tariquidar* in 2 studies
2 other study(ies) available for chlorophyll-a and tariquidar
Article | Year |
---|---|
Specific inhibitors of the breast cancer resistance protein (BCRP).
A new class of specific breast cancer resistance protein (BCRP) inhibitors was identified, showing no inhibition of the ATP binding cassette (ABC) transporters P-gp and MRP1. Some of these modulators inhibit BCRP with high potency; they are only slightly less potent than Ko143 and could serve as promising lead structures for the design of novel effective BCRP inhibitors. These inhibitors are structurally related to tariquidar (XR9576) and belong to a library of multidrug-resistance modulators synthesized by our research group. The absence of the tetrahydroisoquinoline substructure appears to play a crucial role for specificity; we found that the presence of this substructure is not essential for interaction with BCRP. To determine the type of interaction between pheophorbide A and compounds with and without the tetrahydroisoquinoline substructure, various substrate pheophorbide A concentrations were used in enzyme kinetics assays. The resulting data show that these compounds share a noncompetitive-type interaction with pheophorbide A. Experiments with imatinib and pheophorbide A revealed a mixed-type interaction. The combination of imatinib and compounds with and without the tetrahydroisoquinoline substructure resulted in a positive cooperative effect, indicating that imatinib engages a binding site distinct from that of the new compounds on one side and distinct from that of pheophorbide A on the other side as well. The results of this study suggest that the category of BCRP-specific inhibitors, which includes only fumitremorgin C, Ko143 and analogues, and novobiocin needs to be extended by this new class of inhibitors, which possess three key characteristics: specificity, potency, and low toxicity. Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Benzamides; Binding Sites; Breast Neoplasms; Cell Line, Tumor; Chlorophyll; Diketopiperazines; Drug Resistance, Multiple; Female; Heterocyclic Compounds, 4 or More Rings; Humans; Imatinib Mesylate; Indoles; Neoplasm Proteins; Novobiocin; Piperazines; Pyrimidines; Quinolines; Structure-Activity Relationship | 2010 |
Pheophorbide a is a specific probe for ABCG2 function and inhibition.
Pheophorbide a (PhA), a chlorophyll catabolite, was shown to be an ABCG2 substrate based on Abcg2(-/-) knockout mouse studies (J. W. Jonker et al., Proc. Natl. Acad. Sci. USA, 99: 15649-15654, 2002). We developed a functional assay for ABCG2 using PhA and the ABCG2 inhibitor fumitremorgin C. In selected cell lines expressing high levels of P-glycoprotein, multidrug resistance-associated protein 1, or ABCG2, PhA transport was observed only in cells expressing ABCG2. Fumitremorgin C-inhibitable PhA transport was found to correlate with cell surface ABCG2 expression as measured by the anti-ABCG2 antibody 5D3. We found that 100 micro M of the cyclin-dependent kinase inhibitor UCN-01 or 1 micro M of the P-glycoprotein inhibitor tariquidar inhibited ABCG2-mediated PhA transport. In 4-day cytotoxicity assays, ABCG2-mediated resistance to SN-38 and topotecan was abrogated in ABCG2-transfected HEK-293 cells treated with 1 micro M tariquidar, and ABCG2-transfected cells were 6-7-fold resistant to UCN-01. PhA is an ABCG2-specific substrate with potential value in measuring ABCG2 function and expression in clinical samples. Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Camptothecin; Chlorophyll; Drug Resistance, Neoplasm; Humans; Irinotecan; Neoplasm Proteins; Quinolines; Staurosporine; Topotecan | 2004 |