chlorophyll-a and sulfoquinovosyl-diglyceride

chlorophyll-a has been researched along with sulfoquinovosyl-diglyceride* in 3 studies

Other Studies

3 other study(ies) available for chlorophyll-a and sulfoquinovosyl-diglyceride

ArticleYear
Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria.
    European journal of biochemistry, 2004, Volume: 271, Issue:4

    Sulfoquinovosyl diacylglycerol (SQDG) is involved in the maintenance of photosystem II (PSII) activity in Chlamydomonas reinhardtii[Minoda, A., Sato, N., Nozaki, H., Okada, K., Takahashi, H., Sonoike, K. & Tsuzuki, M. et al. (2002) Eur. J. Biochem.269, 2353-2358]. To understand the spread of the taxa in which PSII interacts with SQDG, especially in cyanobacteria, we produced a mutant defective in the putative sqdB gene responsible for SQDG synthesis from two cyanobacteria, Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942. The mutant of PCC6803, designated SD1, lacked SQDG synthetic ability and required SQDG supplementation for its growth. After transfer from SQDG-supplemented to SQDG-free conditions, SD1 showed decreased net photosynthetic and PSII activities on a chlorophyll (Chl) basis with a decrease in the SQDG content. Moreover, the sensitivity of PSII activity to 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine was increased in SD1. However, SD1 maintained normal amounts of cytochrome b559 and D1 protein (the subunits comprising the PSII complex) on a Chl basis, indicating that the PSII complex content changed little, irrespective of a decrease in the SQDG content. These results suggest that the role of SQDG is the conservation of the PSII properties in PCC6803, consistent with the results obtained with C. reinhardtii. In contrast, the SQDG-null mutant of PCC7942 showed the normal level of PSII activity with little effect on its sensitivity to PSII herbicides. Therefore, the difference in the SQDG requirement for PSII is species-specific in cyanobacteria; this could be of use when investigating the molecular evolution of the PSII complex.

    Topics: Atrazine; Chlorophyll; Chlorophyll A; Culture Media; Cyanobacteria; Cytochrome b Group; Diuron; Genes, Bacterial; Glycolipids; Herbicides; Lipids; Membrane Lipids; Mutagenesis, Insertional; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Photosystem II Protein Complex; Phycobilins; Phycocyanin; Pyrroles; Species Specificity; Tetrapyrroles; Thylakoids

2004
Anionic lipids are required for chloroplast structure and function in Arabidopsis.
    The Plant journal : for cell and molecular biology, 2003, Volume: 36, Issue:6

    Photosynthetic membranes of plants primarily contain non-phosphorous glycolipids. The exception is phosphatidylglycerol (PG), which is an acidic/anionic phospholipid. A second major anionic lipid in chloroplasts is the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). It is hypothesized that under severe phosphate limitation, SQDG substitutes for PG, ensuring a constant proportion of anionic lipids even under adverse conditions. A newly constructed SQDG and PG-deficient double mutant supports this hypothesis. This mutant, sqd2 pgp1-1, carries a T-DNA insertion in the structural gene for SQDG synthase (SQD2) and a point mutation in the structural gene for phosphatidylglycerolphosphate synthase (PGP1). In the sqd2 pgp1-1 double mutant, the fraction of total anionic lipids is reduced by approximately one-third, resulting in pale yellow cotyledons and leaves with reduced chlorophyll content. Photoautotrophic growth of the double mutant is severely compromised, and its photosynthetic capacity is impaired. In particular, photosynthetic electron transfer at the level of photosystem II (PSII) is affected. Besides these physiological changes, the mutant shows altered leaf structure, a reduced number of mesophyll cells, and ultrastructural changes of the chloroplasts. All observations on the sqd2 pgp1-1 mutant lead to the conclusion that the total content of anionic thylakoid lipids is limiting for chloroplast structure and function, and is critical for overall photoautotrophic growth and plant development.

    Topics: Anions; Arabidopsis; Chlorophyll; Chloroplasts; DNA, Bacterial; Glycolipids; Lipid Metabolism; Mutagenesis; Mutagenesis, Insertional; Plant Leaves; Pollen

2003
Bleaching herbicide effects on plastids of dark-grown plants: lipid composition of etioplasts in amitrole and norflurazon-treated barley leaves.
    Journal of experimental botany, 2002, Volume: 53, Issue:376

    The effects of the bleaching herbicides amitrole (125 micro M) and norflurazon (100 micro M) on etioplast lipids were studied in barley plants (Hordeum vulgare L. cv. Express) grown for 7 d either at 20 degrees C or 30 degrees C in darkness. Total lipid, glycolipid and phospholipid contents of control etioplasts were increased at 30 degrees C in comparison with those at 20 degrees C. The two herbicides caused a decrease in the total lipid, glycolipid and phospholipid amounts compared to the untreated etioplasts and lowered the lipid to protein ratio. In the controls, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) accounted for about 66 mol% of the etioplast polar lipids, while the remainder was represented by sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), in approximately equal proportions. Both amitrole and norflurazon increased MGDG at both temperatures, but decreased DGDG except with norflurazon at 30 degrees C. As a consequence, the MGDG to DGDG molar ratio was higher in the herbicide-treated etioplasts compared to the controls at both the growth temperatures. The amount of the negatively charged polar lipids SQDG and PG were decreased by treatments with amitrole at 20 degrees C and norflurazon at 30 degrees C. The two herbicides determined different responses in the fatty acid unsaturation of the individual polar lipids. Changes in the lipid composition of etioplasts and the interaction between the pigment-protein complex, protochlorophyllide-NADPH-protochlorophyllide oxidoreductase, and polar lipids are discussed.

    Topics: Amitrole; Chlorophyll; Darkness; Diglycerides; Galactolipids; Glycolipids; Herbicides; Hordeum; Light; Lipid Metabolism; Oxidoreductases; Oxidoreductases Acting on CH-CH Group Donors; Phospholipids; Plant Leaves; Plant Proteins; Plastids; Pyridazines; Temperature

2002