chlorophyll-a has been researched along with scytonemin* in 4 studies
4 other study(ies) available for chlorophyll-a and scytonemin
Article | Year |
---|---|
Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile.
Scytonemin, a UV-screening molecule produced by certain Cyanobacteria to protect against harmful UV radiation, was studied in endolithic cyanobacterial colonies in the halite crust from one of the driest places on Earth - the hyperarid zone of the Atacama Desert. The distribution of the pigment within the evaporitic crust was studied in detail by various independent analytical methods: Raman spectroscopy (including Raman imaging); advanced microscopic observations (fluorescence microscopy, confocal laser scanning microscopy, low-temperature scanning electron microscopy); and spectrophotometric analyses. The differences in scytonemin biosynthesis were mapped within the colonized interior layers, which can be divided into scytonemin-rich and scytonemin-poor zones. A 532 nm laser for excitation proved to be an ideal excitation source with which to observe the relative content of scytonemin within a particular cell aggregate, as well as between different cell aggregates; based on the scytonemin/carotenoid Raman signal intensity ratio of selected corroborative bands for these two compounds. Significantly, scytonemin was found to accumulate within a decayed biomass in the surface portions of the halite crust. These were found to be highly enriched in both the absolute scytonemin content (as documented by UV/VIS spectrophotometry) and its content relative to other pigments associated with the cyanobacterial cells (e.g. carotenoids and chlorophyll). Topics: Carotenoids; Chile; Chlorophyll; Cyanobacteria; Desert Climate; Geologic Sediments; Indoles; Light; Phenols; Ultraviolet Rays | 2014 |
Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments.
Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas. Topics: Biofilms; Biofouling; Calcium; Chlorophyll; Chlorophyll A; Cyanobacteria; Ferrous Compounds; India; Indoles; Magnesium; Minerals; Phenols; Phototrophic Processes; Pigments, Biological; Polysaccharides, Bacterial; Ultraviolet Rays | 2012 |
Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO(2) efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO(2) efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO(2) efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO(2) efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO(2) efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. Topics: Animals; Botswana; Carbon; Carbon Cycle; Carbon Dioxide; Chlorophyll; Chlorophyll A; Conservation of Natural Resources; Desert Climate; Ecosystem; Fires; Herbivory; Indoles; Phenols; Poaceae; Seasons; Soil; Soil Microbiology; Temperature; Water | 2012 |
Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman.
Biological desert crusts are relatively common in the arid deserts of the Sultanate of Oman; however, little is known about their microbial community composition and role in soil fertilization. We compared three crusts from geographically different locations for their soil texture, bacterial community structure, pigment composition and nitrogenase activity. The crusts were growing on alkaline (pH 7.6-8.7) loamy sand and silty loam soils. Microscopically, Microcoleus vaginatus was the most abundant cyanobacterium, but Nostoc and Scytonema types dominated in cultures. The 16S rRNA gene sequences showed close similarities in the crusts' bacterial composition, with 77-81% of the total clones belonging to cyanobacteria and the rest distributed among Alpha- and Deltaproteobacteria, Bacteriodetes, Gemmatimonas and Planctomycetes. Thirty-seven percent of the cyanobacterial clones were affiliated with heterocystous types such as Nostoc, Scytonema, Brasilonema and Petalonema. Chlorophyll a concentrations suggest a similar abundance of phototrophs in all crusts. High levels of the UVA sunscreen scytonemin were detected in the exposed crusts. The three crusts exhibited comparable acetylene reduction rates in the light and in the dark, with a maximum rate of 58.5+/-2.6 micromol C(2)H(2) reduced m(-2) h(-1). We conclude that the crusts, regardless of their geographical location, were rich in heterocystous cyanobacteria that can fix nitrogen and could possibly improve soil stability and productivity. Topics: Acetylene; Biodiversity; Chlorophyll; Chlorophyll A; Cyanobacteria; Desert Climate; Gene Library; Geography; Indoles; Nitrogen Fixation; Oman; Phenols; Phylogeny; RNA, Ribosomal, 16S; Soil Microbiology | 2010 |