chlorophyll-a and purpurin-18

chlorophyll-a has been researched along with purpurin-18* in 6 studies

Other Studies

6 other study(ies) available for chlorophyll-a and purpurin-18

ArticleYear
Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro.
    Journal of photochemistry and photobiology. B, Biology, 2017, Volume: 168

    Photodynamic therapy (PDT) is one of the most promising methods of specific cancer treatment. However, commercially available photosensitizers (PSs) show significant drawbacks, such as side toxicity, low penetration ability, low blood solubility, low tumor selectivity etc. In addition, as was shown previously, a conjugation of polyamines with several toxic agents led to an increased toxicity to cancer cells. Here, we synthesized conjugates of two chlorine photosensitizers, purpurin 18 and pheophorbide a, with spermine in natural and Boc-protected form. Using specialized software, we calculated octanol-water partition coefficients for single protonation state (logP) of single PSs and PS/spermine conjugates. We found that the addition of spermine to chlorine PSs shifted the logP towards higher hydrophilicity in comparison to logP of single chlorines. In vitro studies on several cancer cells indicated that conjugation of purpurin 18 with spermine increased its retention in cancer cells. Using various concentrations of this conjugate, we found that lower concentrations (under 0.2μM) of purpurin 18/spermine conjugate launched apoptosis in HeLa cells. This combined with its high phototoxicity makes the purpurin 18/spermine conjugate a promising photosensitizer for PDT. Obtained results might serve as a basis for further studies of this potential third-generation PS on mammalian models in vivo.

    Topics: Animals; Apoptosis; Cell Line, Tumor; Chlorophyll; HeLa Cells; Humans; Hydrophobic and Hydrophilic Interactions; Photochemotherapy; Photosensitizing Agents; Porphyrins; Spermine

2017
Synthesis of novel long wavelength cationic chlorins via stereoselective aldol-like condensation.
    Bioorganic & medicinal chemistry letters, 2012, Mar-01, Volume: 22, Issue:5

    Using stereoselective aldol-like condensation as a key methodology, a series of chlorophyll a-based long wavelength cationic chlorins were synthesized using methyl pyropheophorbide a (MPPa) and purpurin-18-N-methoxylimide methyl ester as starting materials. Such long wavelength cationic chlorins possess covalently linked cationic moieties (pyridinium or quinolinium) on the peripheral of their tetrapyrrole macrocycles. It was found that all long wavelength cationic chlorins showed their longest absorption maxima in the range of 712-763nm, making them potential photosensitizers in photodynamic therapy. The results of preliminary experiments probing in vitro photodynamic effects showed that the purpurinimide derivatives exhibit relatively high phototoxicity in HeLa cells as compared to MPPa derivatives.

    Topics: Cell Survival; Chlorophyll; Chlorophyll A; HeLa Cells; Humans; Neoplasms; Photochemotherapy; Photosensitizing Agents; Porphyrins; Stereoisomerism

2012
Horseradish peroxidase-catalyzed oxidation of chlorophyll a with hydrogen peroxide: characterization of the products and mechanism of the reaction.
    Biochimica et biophysica acta, 2010, Volume: 1797, Issue:5

    Horseradish peroxidase was verified to catalyze, without any phenol, the hydrogen peroxide oxidation of chlorophyll a (Chl a), solubilized with Triton X-100. The 13(2)(S) and 13(2)(R) diastereomers of 13(2)-hydroxyChl a were characterized as major oxidation products (ca. 60%) by TLC on sucrose, UV-vis, (1)H, and (13)C NMR spectra, as well as fast-atom bombardment MS. A minor amount of the 15(2)-methyl, 17(3)-phytyl ester of Mg-unstable chlorin was identified on the basis of its UV-vis spectrum and reactivity with diazomethane, which converted it to the 13(1),15(2)-dimethyl, 17(3)-phytyl ester of Mg-purpurin 7. The side products (ca. 10%) were suggested to include the 17(3)-phytyl ester of Mg-purpurin 18, which is known to form easily from the Mg-unstable chlorin. The side products also included two red components with UV-vis spectral features resembling those of pure Chl a enolate anion. Hence, the two red components were assigned to the enolate anions of Chl a and pheophytin a or, alternatively, two different complexes of the Chl a enolate ion with Triton X-100. All the above products characterized by us are included in our published free-radical allomerization mechanism of Chl a, i.e. oxidation by ground-state dioxygen. The HRP clearly accelerated the allomerization process, but it did not produce bilins, that is, open-chain tetrapyrroles, the formation of which would require oxygenolysis of the chlorin macrocycle. In this regard, our results are in discrepancy with the claim by several researchers that 'bilirubin-like compounds' are formed in the HRP-catalyzed oxidation of Chl a. Inspection of the likely reactions that occurred on the distal side of the heme in the active centre of HRP provided a reasonable explanation for the observed catalytic effect of the HRP on the allomerization of Chl. In the active centre of HRP, the imidazole nitrogen of His-42 was considered to play a crucial role in the C-13(2) deprotonation of Chl a, which resulted in the Chl a enolate ion resonance hybrid. The Chl enolate was then oxidized to the Chl 13(2)-radical while the HRP Compound I was reduced to Compound II. The same reactive Chl derivatives, i.e. the Chl enolate anion and the Chl 13(2)-radical, which are produced twice in the HRP reaction cycle, happen to be the crucial intermediates in the initial stages of the Chl allomerization mechanism.

    Topics: Catalysis; Chlorophyll; Chlorophyll A; Chromatography, Thin Layer; Horseradish Peroxidase; Hydrogen Peroxide; Magnetic Resonance Spectroscopy; Octoxynol; Oxidants; Oxidation-Reduction; Porphyrins; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2010
Pigment alterations in the brown mussel Perna perna.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 2008, Volume: 150, Issue:4

    Potential sex and/or gametogenic stage differences in the metabolism of chlorophyll-a and carotenoids in the brown mussel Perna perna of southern Brazil were studied using high performance liquid chromatography (HPLC). Carotenoids derived directly from diet (phytoplankton) were fucoxanthin plus diatoxanthin (diatoms), alloxanthin (cryptophytes) and zeaxanthin (mainly cyanobacteria). Females accumulated carotenoid-diols and epoxides (~3-4 mg/g-dry wt.) while males had much lower concentrations (~0.7 mg/g-dry wt.). An antioxidant/free radical scavenging role is proposed for carotenoids in females. Mean ratios of chlorophyll plus derivatives (Chlns-a) to carotenoids for male and female P. perna were 50:1 and 4:1, respectively. The higher ratio in males relates to both higher carotenoid contents in females plus higher total Chlns-a in males (~22 mg/g-dry wt.), relative to the females (~4 mg/g-dry wt.). Chlorophyll-a metabolism in both sexes followed two distinct pathways. First, cyclization of pyropheophorbide-a gave 13(2), 17(3)-cyclopheophorbide-a-enol (CPPaE) which was further oxidized to hydroxy-chlorophyllone. Second, chlorophyll-a derivatives retaining the 13(2)-carbomethoxy moiety were oxidized to purpurin-18 which was hydrolyzed to chlorin-p(6). In both cases, metabolism of dietary chlorophyll-a was oxidative and derivatives could either serve as antioxidants or merely be the results of non-specific digestive processes.

    Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Epoxy Compounds; Female; Male; Molecular Structure; Perna; Phytoplankton; Porphyrins; Xanthophylls; Zeaxanthins

2008
Pharmacokinetics and phototoxicity of purpurin-18 in human colon carcinoma cells using liposomes as delivery vehicles.
    Cancer chemotherapy and pharmacology, 2006, Volume: 57, Issue:4

    Pharmacokinetics and phototoxicity of purpurin-18 (Pp18) in human colon carcinoma cells (Colo-205) was studied using liposomes as delivery vehicles. Cytotoxicity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and neutral red uptake assay, and mode of cell death was assessed by the study of cell morphology and nuclear staining with Hoechst 33342-propidium iodide. Pp18 solubilized in dimethyl sulfoxide saline solution was observed to aggregate (Q-band absorption 740 nm), resulting in very poor cellular uptake. Pp18 incorporated in liposome remained in monomeric form (Q-band absorption 695 nm), but due to the presence of an anhydride ring in the molecule it readily yielded another photosensitizer, chlorin p6 (Q-band absorption 662 nm). Measurements at various pH showed that Pp18 in liposome was stable at acidic pH (6.5). Incubation of cells with 6.0 microM Pp18 in liposome at pH 6.5 showed a rapid cellular uptake. Spectrofluorometric measurements showed the presence of both Pp18 and chlorin p6, indicating conversion of some amount of Pp18 into chlorin p6 in the cells. Fluorescence microscopy revealed that the fluorescence was localized mainly in the cytoplasm, sparing the nucleus. Illumination of cells to white light after 4-h incubation with Pp18 liposome preparation was observed to lead to dose-dependent decrease in cell viability. At low irradiation time, cells displayed formation of plasma membrane blebs and micronuclei typical of apoptotic cell death. In contrast, at higher irradiation time, cell swelling and vacuolization in nucleus was observed, suggesting cell death due to necrosis. Irradiation with narrow bandwidth light showed that at low pH, the relative phototoxicity due to pp18 was higher than that due to chlorin p6. It is suggested that the pH-dependent conversion of pp18 to chlorin p6 can be exploited to increase PDT selectivity.

    Topics: Carcinoma; Cell Death; Cell Line, Tumor; Chlorophyll; Colonic Neoplasms; Dermatitis, Phototoxic; DNA Fragmentation; Drug Delivery Systems; Humans; Hydrogen-Ion Concentration; Liposomes; Neutral Red; Phosphatidylcholines; Porphyrins; Radiation-Sensitizing Agents

2006
Photodynamic sensitizers from chlorophyll: purpurin-18 and chlorin p6.
    Photochemistry and photobiology, 1988, Volume: 48, Issue:5

    Topics: Cells, Cultured; Chlorophyll; Fibroblasts; Humans; Light; Porphyrins; Radiation-Sensitizing Agents

1988