chlorophyll-a has been researched along with plastoquinol* in 8 studies
1 review(s) available for chlorophyll-a and plastoquinol
Article | Year |
---|---|
The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Topics: Chlorophyll; Chloroplasts; Cytochrome b6f Complex; Electron Transport; Hydrogen-Ion Concentration; Light; Models, Molecular; Oxidation-Reduction; Photosynthesis; Photosystem I Protein Complex; Photosystem II Protein Complex; Plastoquinone; Thylakoids | 2014 |
7 other study(ies) available for chlorophyll-a and plastoquinol
Article | Year |
---|---|
Kinetics of plastoquinol oxidation by the Q-cycle in leaves.
Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control." Topics: Algorithms; Chlorophyll; Cytochrome b6f Complex; Cytochromes f; Electron Transport; Helianthus; Kinetics; Light; Light-Harvesting Protein Complexes; Models, Biological; Oxidation-Reduction; Photosynthesis; Photosystem I Protein Complex; Plant Leaves; Plant Proteins; Plastocyanin; Plastoquinone | 2016 |
Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex.
Electron transfers within and between protein complexes are core processes of the electron transport chains occurring in thylakoid (chloroplast), mitochondrial, and bacterial membranes. These electron transfers involve a number of cofactors. Here we describe the derivation of molecular mechanics parameters for the cofactors associated with the function of the photosystem II core complex: plastoquinone, plastoquinol, heme b, chlorophyll A, pheophytin, and β-carotene. Parameters were also obtained for ubiquinol and ubiquinone, related cofactors involved in the respiratory chain. Parameters were derived at both atomistic and coarse grain (CG) resolutions, compatible with the building blocks of the GROMOS united-atom and Martini CG force fields, respectively. Structural and thermodynamic properties of the cofactors were compared to experimental values when available. The topologies were further tested in molecular dynamics simulations of the cofactors in their physiological environment, e.g., either in a lipid membrane environment or in complex with the heme binding protein bacterioferritin. Topics: beta Carotene; Chlorophyll; Chlorophyll A; Heme; Lipid Bilayers; Molecular Dynamics Simulation; Molecular Structure; Octanols; Pheophytins; Photosystem II Protein Complex; Plastoquinone; Protein Conformation; Thermodynamics; Ubiquinone; Water | 2015 |
Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana.
The constitutive expression of the bacterial carotene desaturase (CRTI) in Arabidopsis thaliana leads to increased susceptibility of leaves to light-induced damage. Changes in the photosynthetic electron transport chain rather than alterations of the carotenoid composition in the antenna were responsible for the increased photoinhibition. A much higher level of superoxide/hydrogen peroxide was generated in the light in thylakoid membranes from the CRTI expressing lines than in wild-type while the level of singlet oxygen generation remained unchanged. The increase in reactive oxygen species was related to the activity of plastid terminal oxidase (PTOX) since their generation was inhibited by the PTOX-inhibitor octyl gallate, and since the protein level of PTOX was increased in the CRTI-expressing lines. Furthermore, cyclic electron flow was suppressed in these lines. We propose that PTOX competes efficiently with cyclic electron flow for plastoquinol in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool. Topics: Arabidopsis; Arabidopsis Proteins; Bacterial Proteins; Carotenoids; Chlorophyll; Electron Transport; Gallic Acid; Gene Expression Regulation, Enzymologic; Hydrogen Peroxide; Immunoblotting; Oxidation-Reduction; Oxidoreductases; Photosynthesis; Plant Leaves; Plants, Genetically Modified; Plastoquinone; Singlet Oxygen; Superoxides; Thylakoids | 2014 |
Dissection of photosynthetic electron transport process in sweet sorghum under heat stress.
Plant photosynthesis and photosystem II (PSII) are susceptible to high temperature. However, photosynthetic electron transport process under heat stress remains unclear. To reveal this issue, chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected in sweet sorghum. At 43°C, J step in the chlorophyll a fluorescence transient was significantly elevated, suggesting that electron transport beyond primary quinone of PSII (Q(A)) (primary quinone electron acceptor of PSII) was inhibited. PSI (Photosystem I) photochemical capacity was not influenced even under severe heat stress at 48°C. Thus, PSI oxidation was prolonged and PSI re-reduction did not reach normal level. The inhibition of electron transport between PSII and PSI can reduce the possibility of PSI photoinhibition under heat stress. PSII function recovered entirely one day after heat stress at 43°C, implying that sweet sorghum has certain self-remediation capacity. When the temperature reached 48°C, the maximum quantum yield for primary photochemistry and the electron transport from PSII donor side were remarkably decreased, which greatly limited the electron flow to PSI, and PSI re-reduction suspended. The efficiency of an electron transferred from the intersystem electron carrier (plastoquinol, PQH₂) to the end electron acceptors at the PSI acceptor side increased significantly at 48°C, and the reason was the greater inhibition of electron transport before PQH₂. Thus, the fragment from Q(A) to PQH₂ is the most heat sensitive in the electron transport chain between PSII and PSI in sweet sorghum. Topics: Chlorophyll; Chlorophyll A; Electron Transport; Heat-Shock Response; Kinetics; Oxidation-Reduction; Photosynthesis; Photosystem I Protein Complex; Photosystem II Protein Complex; Plant Leaves; Plant Proteins; Plastoquinone; Sorghum | 2013 |
Double reduction of plastoquinone to plastoquinol in photosystem 1.
In Photosystem 1 (PS1), phylloquinone (PhQ) acts as a secondary electron acceptor from chlorophyll ec(3) and also as an electron donor to the iron-sulfur cluster F(X). PS1 possesses two virtually equivalent branches of electron transfer (ET) cofactors from P(700) to F(X), and the lifetime of the semiquinone intermediate displays biphasic kinetics, reflecting ET along the two different branches. PhQ in PS1 serves only as an intermediate in ET and is not normally fully reduced to the quinol form. This is in contrast to PS2, in which plastoquinone (PQ) is doubly reduced to plastoquinol (PQH(2)) as the terminal electron acceptor. We purified PS1 particles from the menD1 mutant of Chlamydomonas reinhardtii that cannot synthesize PhQ, resulting in replacement of PhQ by PQ in the quinone-binding pocket. The magnitude of the stable flash-induced P(700)(+) signal of menD1 PS1, but not wild-type PS1, decreased during a train of laser flashes, as it was replaced by a ~30 ns back-reaction from the preceding radical pair (P(700)(+)A(0)(-)). We show that this process of photoinactivation is due to double reduction of PQ in the menD1 PS1 and have characterized the process. It is accelerated at lower pH, consistent with a rate-limiting protonation step. Moreover, a point mutation (PsaA-L722T) in the PhQ(A) site that accelerates ET to F(X) ~2-fold, likely by weakening the sole H-bond to PhQ(A), also accelerates the photoinactivation process. The addition of exogenous PhQ can restore activity to photoinactivated PS1 and confer resistance to further photoinactivation. This process also occurs with PS1 purified from the menB PhQ biosynthesis mutant of Synechocystis PCC 6803, demonstrating that it is a general phenomenon in both prokaryotic and eukaryotic PS1. Topics: Amino Acid Substitution; Bacterial Proteins; Binding Sites; Biocatalysis; Chlamydomonas reinhardtii; Chlorophyll; Electron Transport; Hydrogen-Ion Concentration; Kinetics; Mutation; Oxidation-Reduction; Photobleaching; Photosystem I Protein Complex; Plant Proteins; Plastoquinone; Point Mutation; Recombinant Proteins; Synechocystis; Vitamin K 1 | 2011 |
Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool.
The psbEFLJ operon of tobacco plastids encodes four bitopic low molecular mass transmembrane components of photosystem II. Here, we report the effect of inactivation of psbL on the directional forward electron flow of photosystem II as compared to that of the wild type and the psbJ deletion mutant, which is impaired in PSII electron flow to plastoquinone [Regel et al. (2001) J. Biol. Chem. 276, 41473-41478]. Exposure of Delta psbL plants to a saturating light pulse gives rise to the maximal fluorescence emission, Fm(L), which is followed within 4-6 s by a broader hitherto not observed second fluorescence peak in darkness, Fm(D). Conditions either facilitating oxidation or avoiding reduction of the plastoquinone pool do not affect the Fm(L) level of Delta psbL plants but prevent the appearance of Fm(D). The level of Fm(D) is proportional to the intensity and duration of the light pulse allowing reduction of the plastoquinone pool in dark-adapted leaves prior to the activation of PSI and oxidation of plastoquinol. Lowering the temperature decreases the Fm(D) level in the Delta psbL mutant, whereas it increases considerably the lifetime of Q(A)*- in the Delta psbJ mutant. The thermoluminescence signal generated by Q(A)*-/S(2) charge recombination is not affected; on the other hand, charge recombination of Q(B)*-/S(2,3) could not be detected in Delta psbL plants. PSII is highly sensitive to photoinhibition in Delta psbL. We conclude that PsbL prevents reduction of PSII by back electron flow from plastoquinol protecting PSII from photoinactivation, whereas PsbJ regulates forward electron flow from Q(A)*- to the plastoquinone pool. Therefore, both proteins contribute substantially to ensure unidirectional forward electron flow from PSII to the plastoquinone pool. Topics: Bacterial Proteins; Chlorophyll; Chlorophyll A; Darkness; Electron Transport; Hot Temperature; Kinetics; Light; Luminescent Measurements; Membrane Proteins; Mutation; Nicotiana; Oxidation-Reduction; Photosynthesis; Photosystem I Protein Complex; Photosystem II Protein Complex; Plant Leaves; Plastoquinone; Protein Subunits; Spectrometry, Fluorescence; Temperature | 2004 |
Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis.
The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein. Topics: Arabidopsis; Chlorophyll; Cytochrome b Group; Cytochrome b6f Complex; Electron Transport; Electron Transport Complex III; Hydrogen-Ion Concentration; In Vitro Techniques; Iron-Sulfur Proteins; Light; Light-Harvesting Protein Complexes; Oxidation-Reduction; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Photosystem I Protein Complex; Plant Proteins; Plastoquinone; Point Mutation; Protein Subunits; Thylakoids | 2002 |