chlorophyll-a and geosmin

chlorophyll-a has been researched along with geosmin* in 10 studies

Other Studies

10 other study(ies) available for chlorophyll-a and geosmin

ArticleYear
Temporal variation of 2-MIB and geosmin production by Pseudanabaena galeata and Phormidium ambiguum exposed to high-intensity light.
    Water environment research : a research publication of the Water Environment Federation, 2023, Volume: 95, Issue:1

    This study demonstrated the temporal variation of 2-methylisoborneol (2-MIB) and geosmin (GSM) production of two filamentous cyanobacteria species Pseudanabaena galeata (NIES-512; planktonic) and Phormidium ambiguum (NIES-2119; benthic) exposed to high light intensity (950-1000 μmol m

    Topics: Chlorophyll; Cyanobacteria; Odorants; Phormidium

2023
The relationships between odors and environmental factors at bloom and non-bloom area in Lake Taihu, China.
    Chemosphere, 2019, Volume: 218

    Lake Taihu has been experiencing taste and odor (T&O) events recently. And for the purpose of seeking the environmental factors having great influences on T&O compounds and supplying theory information for preventing the occurrence of T&O problems, Redundance analysis (RDA) was conducted for the dissolved and particle-bound forms of T&O compounds. And the whole lake was divided into the blooming and non-blooming areas. Results indicated that environmental factors, including biotic and abiotic factors, made great contributions to the variation of T&O compounds in Lake Taihu. The key biotic factors included Microcystis, Oscillatoria and chlorophyll-a. Microcystis made great contribution of these compounds in the blooming area and had close relationship with those particulate forms of odorants in Taihu. Oscillatoria made great and absolute contribution to odorants in the non-blooming area. Chlorophyll-a influenced greatly the odorants in the blooming area and had significant relationship with the particle-bound fractions in the whole lake. Dissolved oxygen and water temperature were the dominant abiotic factors with large contributions.

    Topics: Air Pollutants; Camphanes; China; Chlorophyll; Environmental Monitoring; Eutrophication; Lakes; Microcystis; Naphthols; Odorants; Oscillatoria; Oxygen; Taste; Temperature; Water Pollutants, Chemical

2019
Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment.
    Water research, 2018, Oct-01, Volume: 142

    Benthic Oscillatoria sp. may form dense surface blooms especially under eutrophic and calm conditions, which poses a threat to drinking water safety because it can produce toxic and odorous metabolites. This is the first study to investigate the effect of the conventional coagulant polyaluminium ferric chloride (PAFC) on removal of Oscillatoria sp., and the behavior of Oscillatoria sp. cells in sludges formed from different dosages of PAFC (control, optimum, and overdose system) during storage was also studied. Oscillatoria sp. cells can be removed efficiently by coagulation of PAFC. The adverse environmental stresses of sludge, such as lack of light and anoxic environment, decrease cell viability and induce the increase of superoxide dismutase activity (SOD) and malondialdehyde content (MDA) in Oscillatoria sp. cells during the first 4 days. Because Oscillatoria sp. can adapt to the low-light and hypoxic circumstances in sludge gradually, the cells regrow with prolonged storage time. Compared to planktonic Microcystis aeruginosa and Cylindrospermopsis raciborskii, regrowth of Oscillatoria sp. during storage may present a bigger threat, even though Microcystis aeruginosa and Cylindrospermopsis raciborskii cells will be damaged and release toxic compounds. Growth rates of algae in coagulated systems were lower than that in control system because of the restriction of flocs. It is worth noting that the chlorophyll a level was increased by a factor of 3.5 in the optimal-dose system, and worse, the overdose system increased by a factor of 6 in chlorophyll a after 8 d storage due to the benefit of higher Fe levels. Concentrations of extracellular geosmin and cylindrospermopsin also increased during storage, especially after 4 d, and varied in the following sequence for a given storage duration: control system > overdose system > optimum system. Overall, due to decrease of SOD and MDA in Oscillatoria sp. cells after 4 d storage, algae cells regrew rapidly, especially in overdose system. Hence, sludge should be treated within 4 d and excess PAFC dosing should be avoided.

    Topics: Alkaloids; Aluminum Compounds; Bacterial Toxins; Chlorides; Chlorophyll; Chlorophyll A; Cyanobacteria Toxins; Ferric Compounds; Naphthols; Oscillatoria; Sewage; Uracil; Water Purification

2018
Modelling geosmin concentrations in three sources of raw water in Quebec, Canada.
    Environmental monitoring and assessment, 2013, Volume: 185, Issue:1

    The presence of off-flavour compounds such as geosmin, often found in raw water, significantly reduces the organoleptic quality of distributed water and diverts the consumer from its use. To adapt water treatment processes to eliminate these compounds, it is necessary to be able to identify them quickly. Routine analysis could be considered a solution, but it is expensive and delays associated with obtaining the results of analysis are often important, thereby constituting a serious disadvantage. The development of decision-making tools such as predictive models seems to be an economic and feasible solution to counterbalance the limitations of analytical methods. Among these tools, multi-linear regression and principal component regression are easy to implement. However, due to certain disadvantages inherent in these methods (multicollinearity or non-linearity of the processes), the use of emergent models involving artificial neurons networks such as multi-layer perceptron could prove to be an interesting alternative. In a previous paper (Parinet et al., Water Res 44: 5847-5856, 2010), the possible parameters that affect the variability of taste and odour compounds were investigated using principal component analysis. In the present study, we expand the research by comparing the performance of three tools using different modelling scenarios (multi-linear regression, principal component regression and multi-layer perceptron) to model geosmin in drinking water sources using 38 microbiological and physicochemical parameters. Three very different sources of water, in terms of quality, were selected for the study. These sources supply drinking water to the Québec City area (Canada) and its vicinity, and were monitored three times per month over a 1-year period. Seven different modelling methods were tested for predicting geosmin in these sources. The comparison of the seven different models showed that simple models based on multi-linear regression provide sufficient predictive capacity with performance levels comparable to those obtained with artificial neural networks. The multi-linear regression model (R(2) = 0.657, <0.001) used only four variables (phaeophytin, sum of green algae, chlorophyll-a and potential Redox) in comparison with ten variables (potassium, heterotrophic bacteria, organic nitrogen, total nitrogen, phaeophytin, total organic carbon, sum of green algae, potential Redox, UV absorbance at 254 nm and atypical bacteria) for the best model obta

    Topics: Chlorophyll; Chlorophyll A; Drinking Water; Environmental Monitoring; Fresh Water; Linear Models; Models, Chemical; Naphthols; Principal Component Analysis; Quebec; Water Pollutants, Chemical; Water Pollution, Chemical; Water Purification

2013
Earthy odor compounds production and loss in three cyanobacterial cultures.
    Water research, 2012, Oct-15, Volume: 46, Issue:16

    Geosmin and 2-methylisoborneol (MIB) related odor events caused by cyanobacteria have been a very common problem to water supply. This paper investigated the effects of temperature (18 and 25 °C) and light intensity (10 and 100 μmol photons m(-2) s(-1)) on the production behaviors of earthy odor compounds by three odorous cyanobacteria, i.e., the geosmin-producing planktonic Anabaena circinalis (Ana 318), geosmin-producing benthic Phormidium amoenum (Pho 012) and MIB-producing benthic Phormidium sp. (Pho 689). At the same time, the effects of biodegradation and volatilization on the fates of the released odor compounds in water were also evaluated. The combination of high temperature (25 °C) and light intensity (100 μmol photons m(-2) s(-1)) favored the growth of the three cyanobacteria and the production of chl-a and odor compounds. However, higher chl-a and odor yields (average odor compounds per cell) were achieved for the two benthic cyanobacteria at the temperature of 18 °C. Most of geosmin was included within the cells for Ana 318 (95-99%) and Pho 012 (85-60%), while only 20-40% MIB was bound to the cells for Pho 689. The half-life times of MIB and geosmin due to volatilization varied between 18.8 and 35.4 days, while 8 out of 10 samples exhibited a half-life time (t(1/2)) for geosmin biodegradation shorter than 1 day (0.38-15.0 h), showing that biodegradation could affect the fate of geosmin significantly in aquatic environments. In comparison, biodegradation of MIB was much slower (t(1/2): 122-2166 h). Denaturing gradient gel electrophoresis (DGGE) analysis showed that Pseudomonas- and Sphingomonas-like bacteria coexisted with cyanobacteria in the cultures, and may have played an important role in geosmin/MIB biodegradation. The result of this study will be helpful for better understanding and managing the earthy odor problems caused by cyanobacteria in water supply.

    Topics: Australia; Biodegradation, Environmental; California; Camphanes; Chlorophyll; Chlorophyll A; Cyanobacteria; Denaturing Gradient Gel Electrophoresis; Light; Naphthols; Odorants; Species Specificity; Temperature; Volatilization; Water Supply

2012
Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir.
    The Science of the total environment, 2007, May-15, Volume: 377, Issue:2-3

    The algal extracellular products (ECPs) in three cultures of cyanobacteria species (Anabaena, Microcystis, and Oscillatoria) dominating the eutrophic reservoir populations and their toxins have been investigated in the present work. Using gas chromatography coupled with high-resolution electron-impact mass spectrometry (GC/EI-MS) and high performance anion-exchange chromatography (HPAEC) techniques, more than 20 compounds were found in the algal culture (including cells and filtrates) extracts. The main identified ECPs were classified to polysaccharides, hydrocarbons, and aldehydes. Odor causing substances such as trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB)were also found in the algal cultures. The potential mutagenicity of the algal suspensions was also studied with the Ames test. The organic extracts of the algal suspension from the axenic cultures were mutagenicity in TA98 without S9 mix and in TA100 with and without S9 mix. The results indicate that the ECPs of three algae species dominating the eutrophic reservoir were mutagenic clearly in the bacterial test.

    Topics: Camphanes; Carbon; Carboxylic Acids; Chlorophyll; Chlorophyll A; Complex Mixtures; Cyanobacteria; Eutrophication; Hydrocarbons; Marine Toxins; Microcystins; Mutagenicity Tests; Naphthols; Polysaccharides; Salmonella typhimurium; Taiwan; Water Supply

2007
Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China.
    Water science and technology : a journal of the International Association on Water Pollution Research, 2007, Volume: 55, Issue:5

    Lake Dianchi is the sixth largest freshwater lake in China. The pilot experimental area (6 km2) in Lake Dianchi is one of the most severely polluted areas in the lake with heavy cyanobacteria blooms. During June 2002 to May 2003, the algal composition and number, and odorous compounds were identified monthly and monitored in the area. Meanwhile, physicochemical parameters such as total phosphorus (TP), total nitrogen (TN), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD(Mn)), dissolved oxygen (DO), pH, transparency, temperature and chlorophyll a (chla) were determined. Four odorous compounds: 2-methylisoborneol (MIB), geosmin, beta-cyclocitral and beta-ionone were found in the lake water. Both the concentration of particulate beta-cyclocitral and that of beta-ionone correlated significantly with the annual variation of Chla, biomass of total phytoplankton, cyanobacteria and Microcystis. The concentration of particulate MIB correlated significantly with the biomass of Oscillatoria, while the concentration of particulate geosmin correlated significantly with the biomass of Anabaena. Off-flavour in the pilot area was found to be caused by a combination of beta-cyclocitral- and beta-ionone-producing Microcystis, MIB-producing Oscillatoria and geosmin-producing Anabaena. beta-ionone, MIB and geosmin contributed collectively to the odour intensity in the lake water.

    Topics: Aldehydes; Camphanes; China; Chlorophyll; Chlorophyll A; Diterpenes; Environmental Monitoring; Eutrophication; Fresh Water; Naphthols; Nitrogen; Norisoprenoids; Oxygen; Phosphorus; Phytoplankton; Water Pollutants, Chemical; Water Purification

2007
Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata.
    Applied and environmental microbiology, 2003, Volume: 69, Issue:9

    Musty "off-flavor" in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least 30 million US dollars annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 micro M (125 micro g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1'-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 micro M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture.

    Topics: Animals; Anthraquinones; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Copper Sulfate; Cyanobacteria; Diuron; Ictaluridae; Kinetics; Naphthols; Odorants; Reproducibility of Results; Water

2003
Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp.
    Water research, 2001, Volume: 35, Issue:5

    A cyanobacterium isolated from a source-water reservoir during a spring odor and taste episode and identified as Anabaena sp. consistently produced geosmin during laboratory culture on modified BG-11 liquid medium. Maximal geosmin/biomass occurred at 20 degrees C and a light intensity of 17 microE/m2/s; geosmin/chla values directly correlated with increasing light intensity (r2 = 0.95, P < 0.01). It was concluded that at 20 degrees C, increasing light intensity favors less chla synthesis and higher geosmin synthesis; at 17 microE/m2/s, increasing temperature stimulates chla production (to 25 degrees C) while repressing geosmin synthesis (above 20 degrees C). Nutritional factors promoting biomass, chla, and geosmin synthesis by Anabaena sp. were also investigated. For cultures grown at 17 microE/m2/s and 20 degrees C for 20 days, both ammonium-N and nitrate-N generally enhanced the growth of Anabaena sp. Nitrate-N promoted more chla production (r2 = 0.99) than ammonium-N. Geosmin synthesis was directly correlated with ammonium-N concentrations (r2 = 0.89), with low nitrate-N (123.5 micrograms/l) favoring maximal geosmin production (2.8 micrograms/l). Increasing nitrate-N concentrations promoted a three-fold increase in chla content with geosmin synthesis decreased by two-fold. Geosmin/mg biomass was directly related to ammonium-N concentration; high nitrate-N levels suppressed geosmin production. No geosmin was detected at or below 118 micrograms phosphate-phosphorus/l. Geosmin, dry weight biomass, and chla production were correlated with increasing phosphorus (P) concentration (r2 = 0.76, 0.96 and 0.98, respectively). No geosmin was detected when copper was present in growth media at or above 6.92 micrograms Cu2+/l (CuSO4.5H2O). Dry weight biomass and chla production were negatively correlated with Cu2+ ion concentrations.

    Topics: Anabaena; Biodegradation, Environmental; Biomass; Chlorophyll; Chlorophyll A; Copper; Kinetics; Light; Naphthols; Nitrates; Odorants; Quaternary Ammonium Compounds; Seasons; Taste; Water Microbiology; Water Supply

2001
Variation of geosmin content in Anabaena cells and its relation to nitrogen utilization.
    Archives of microbiology, 1991, Volume: 157, Issue:1

    The addition of the proper amount of ammonium to the culture medium containing nitrate as nitrogen source enhanced the growth rate of Anabaena viguieri. The amount of geosmin produced by these cells varied with the concentrations of ammonium added. A negative correlation between the amount of geosmin produced and of the growth rate of cells was revealed. This was also found in cells grown on various forms of nitrogen sources. Without supply of any nitrogen compound, this organism is capable of fixing gaseous nitrogen, and under these conditions the cells grew relatively slowly. However, they produced more geosmin (per unit protein mass) than cells grown in the presence of combined nitrogen. The isolation of heterocysts, in which nitrogen was fixed, showed that these cells produced higher amounts of geosmin than vegetative cells. The possible relation of nitrogen assimilation to the production of geosmin in the cells was discussed.

    Topics: Anabaena; Carotenoids; Chlorophyll; Chlorophyll A; Culture Media; Fresh Water; Naphthols; Nitrates; Nitrogen; Nitrogen Fixation; Odorants; Pigments, Biological; Quaternary Ammonium Compounds; Taiwan; Water Microbiology

1991