chlorophyll-a and ethephon

chlorophyll-a has been researched along with ethephon* in 7 studies

Other Studies

7 other study(ies) available for chlorophyll-a and ethephon

ArticleYear
Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit.
    Journal of agricultural and food chemistry, 2017, Aug-02, Volume: 65, Issue:30

    Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.

    Topics: Chlorophyll; Citrus; Color; Food Irradiation; Fruit; Gene Expression Regulation, Plant; Organophosphorus Compounds; Plant Proteins

2017
Postharvest Application of Oligochitosan and Chitosan Reduces Calyx Alterations of Citrus Fruit Induced by Ethephon Degreening Treatment.
    Journal of agricultural and food chemistry, 2016, Oct-05, Volume: 64, Issue:39

    In the present study, we investigated whether the postharvest application of oligochitosan and chitosan could be used as potential alternatives to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment to prevent calyx senescence of mandarin fruits induced by degreening treatment. The results of scanning electron microscopy indicated that the ethephon degreening treatment could accelerate the formation of pedicel abscission layers. Treatments with 15 g kg

    Topics: 2,4-Dichlorophenoxyacetic Acid; Abscisic Acid; Carotenoids; Cellulose; Chitin; Chitosan; Chlorophyll; Chromatography, High Pressure Liquid; Citrus; Color; Ethylenes; Flowers; Food Storage; Fruit; Microscopy, Electron, Scanning; Oligosaccharides; Organophosphorus Compounds; Pectins; Plant Growth Regulators; Plant Proteins

2016
Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress.
    Molecular biotechnology, 2014, Volume: 56, Issue:2

    Peanut, a major edible oil seed crop globally is predominantly grown under rainfed conditions and suffers yield losses due to drought. Development of drought-tolerant varieties through transgenic technology is a valid approach. Besides superior water relation traits like water mining, intrinsic cellular level tolerance mechanisms are important to sustain the growth under stress. To achieve this objective, the focus of this study was to pyramid drought adaptive traits by overexpressing a stress responsive helicase, PDH45 in the background of a genotype with superior water relations. PCR, Southern, and RT-PCR analyses confirmed stable integration and expression of the PDH45 gene in peanut transgenics. At the end of T₃ generation, eight transgenic events were identified as promising based on stress tolerance and improvement in productivity. Several transgenic lines showed stay-green phenotype and increased chlorophyll stability under stress and reduced chlorophyll retardation under etherel-induced simulated stress conditions. Stress-induced root growth was also substantially higher in the case of transformants. This was reflected in increased WUE (low Δ¹³C) and improved growth rates and productivity. The transgenics showed 17.2 and 26.75 % increase in yield under non-stress and stress conditions over wild type ascertaining the feasibility of trait pyramiding strategy for the development of drought-tolerant peanut.

    Topics: Arachis; Chlorophyll; DNA Helicases; Droughts; Gene Expression Regulation, Plant; Organophosphorus Compounds; Pisum sativum; Plant Proteins; Plant Roots; Plants, Genetically Modified; Stress, Physiological

2014
Altered sensitivity to ethylene in 'Tardivo', a late-ripening mutant of Clementine mandarin.
    Physiologia plantarum, 2014, Volume: 151, Issue:4

    'Tardivo' mandarin is a mutant of 'Comune' Clementine with a delay in peel degreening and coloration, allowing late harvesting. In this work, we have explored if the late-harvesting phenotype of 'Tardivo' mandarin is related to altered perception and sensitivity to ethylene. The peel degreening rate was examined after a single ethephon treatment or during a continuous ethylene application in fruits at two maturation stages. In general, ethylene-induced peel degreening was considerably delayed and reduced in fruits of 'Tardivo', as well as the concomitant reduction of chlorophyll (Chl) and chloroplastic carotenoids, and the accumulation of chromoplastic carotenoids. Analysis of the expression of genes involved in Chl degradation, carotenoids, ABA, phenylpropanoids and ethylene biosynthesis revealed an impairment in the stimulation of most genes by ethylene in the peel of 'Tardivo' fruits with respect to 'Comune', especially after 5 days of ethylene application. Moreover, ethylene-induced expression of two ethylene receptor genes, ETR1 and ETR2, was also reduced in mutant fruits. Expression levels of two ethylene-responsive factors, ERF1 and ERF2, which were repressed by ethylene, were also impaired to a different extent, in fruits of both genotypes. Collectively, results suggested an altered sensitivity of the peel of 'Tardivo' to ethylene-induced physiological and molecular responses, including fruit degreening and coloration processes, which may be time-dependent since an early moderated reduction in the responses was followed by the latter inability to sustain ethylene action. These results support the involvement of ethylene in the regulation of at least some aspects of peel maturation in the non-climacteric citrus fruit.

    Topics: Abscisic Acid; Biosynthetic Pathways; Carotenoids; Chlorophyll; Citrus; Ethylenes; Fruit; Gene Expression Regulation, Plant; Genes, Plant; Mutation; Organophosphorus Compounds; Phenylalanine Ammonia-Lyase; Pigmentation; Plant Proteins; Real-Time Polymerase Chain Reaction

2014
NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas).
    Journal of plant physiology, 2013, Nov-15, Volume: 170, Issue:17

    Ethephon, an ethylene releasing compound, promoted leaf senescence, H2O2 elevation, and senescence-associated gene expression in sweet potato. It also affected the glutathione and ascorbate levels, which in turn perturbed H2O2 homeostasis. The decrease of reduced glutathione and the accumulation of dehydroascorbate correlated with leaf senescence and H2O2 elevation at 72h in ethephon-treated leaves. Exogenous application of reduced glutathione caused quicker and significant increase of its intracellular level and resulted in the attenuation of leaf senescence and H2O2 elevation. A small H2O2 peak produced within the first 4h after ethephon application was also eliminated by reduced glutathione. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, delayed leaf senescence and H2O2 elevation at 72h, and its influence was effective only within the first 4h after ethephon treatment. Ethephon-induced senescence-associated gene expression was repressed by DPI and reduced glutathione at 72h in pretreated leaves. Leaves treated with l-buthionine sulfoximine, an endogenous glutathione synthetase inhibitor, did enhance senescence-associated gene expression, and the activation was strongly repressed by reduced glutathione. In conclusion, ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression are all alleviated by reduced glutathione and NADPH oxidase inhibitor DPI. The speed and the amount of intracellular reduced glutathione accumulation influence its effectiveness of protection against ethephon-mediated effects. Reactive oxygen species generated from NADPH oxidase likely serves as an oxidative stress signal and participates in ethephon signaling. The possible roles of NADPH oxidase and reduced glutathione in the regulation of oxidative stress signal in ethephon are discussed.

    Topics: Ascorbic Acid; Buthionine Sulfoximine; Cellular Senescence; Chlorophyll; Ethylenes; Gene Expression Regulation, Plant; Glutathione; Hydrogen Peroxide; Ipomoea batatas; NADPH Oxidases; Onium Compounds; Organophosphorus Compounds; Plant Leaves

2013
Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines.
    PloS one, 2012, Volume: 7, Issue:8

    The net photosynthetic rate, chlorophyll content, chlorophyll fluorescence and 820 nm transmission were investigated to explore the behavior of the photosynthetic apparatus, including light absorption, energy transformation and the photoactivities of photosystem II (PSII) and photosystem I (PSI) during senescence in the stay-green inbred line of maize (Zea mays) Q319 and the quick-leaf-senescence inbred line of maize HZ4. The relationship between the photosynthetic performance and the decrease in chlorophyll content in the two inbred lines was also studied. Both the field and laboratory data indicated that the chlorophyll content, net photosynthetic rate, and the photoactivities of PSII and PSI decreased later and slower in Q319 than in HZ4, indicating that Q319 is a functional stay-green inbred line. In order to avoid the influence of different development stages and environmental factors on senescence, age-matched detached leaf segments from the two inbred lines were treated with ethephon under controlled conditions to induce senescence. The net photosynthetic rate, light absorption, energy transformation, the activities of PSII acceptor side and donor side and the PSI activities decreased much slower in Q319 than in HZ4 during the ethephon-induced senescence. These results suggest that the retention of light absorption, energy transformation and activity of electron transfer contribute to the extended duration of active photosynthesis in Q319. Although the chlorophyll content decreased faster in HZ4, with decrease of chlorophyll content induced by ethephon, photosynthetic performance of Q319 deteriorated much more severely than that of HZ4, indicating that, compared with Q319, HZ4 has an advantage at maintaining higher photosynthetic activity with decrease of chlorophyll although HZ4 is a quick-leaf-senescence inbred line. We conclude that attention should be paid to two favorable characteristics in breeding long duration of active photosynthesis hybrids: 1) maintaining more chlorophyll content during senescence and 2) maintaining higher photosynthetic activity during the loss of chlorophyll.

    Topics: Carbon Dioxide; Chlorophyll; Inbreeding; Organophosphorus Compounds; Oxygen Consumption; Photosynthesis; Photosystem I Protein Complex; Photosystem II Protein Complex; Plant Leaves; Zea mays

2012
Expression of ipt gene controlled by an ethylene and auxin responsive fragment of the LEACO1 promoter increases flower number in transgenic Nicotiana tabacum.
    Plant cell reports, 2006, Volume: 25, Issue:11

    Cytokinins play important roles in regulating plant growth and development. A new genetic construct for regulating cytokinin content in plant cells was cloned and tested. The gene coding for isopentenyl transferase (ipt) was placed under the control of a 0.821 kb fragment of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene promoter from Lycopersicon esculentum (LEACO1) and introduced into Nicotiana tabacum (cv. Havana). Some LEACO1(0.821) (kb)-ipt transgenic plant lines displayed normal shoot morphology but with a dramatic increase in the number of flower buds compared to nontransgenic plants. Other transgenic lines produced excessive lateral branch development but no change in flower bud number. Isolated leaves of transgenic tobacco plants showed a significantly prolonged retention of chlorophyll under dark incubation (25 degrees C for 20 days). Leaves of nontransformed plants senesced gradually under the same conditions. Experiments with LEACO1(0.821) (kb)-gus transgenic tobacco plants suggested auxin and ethylene involvement in induction of LEACO1(0.821) (kb) promoter activity. Multiple copies of nucleotide base sequences associated with either ethylene or auxin response elements were identified in the LEACO1(0.821) (kb) promoter fragment. The LEACO1(0.821) (kb)-ipt fusion gene appears to have potential utility for improving certain ornamental and agricultural crop species by increasing flower bud initiation and altering branching habit.

    Topics: Alkyl and Aryl Transferases; Amino Acid Oxidoreductases; Chlorophyll; Ethylenes; Flowers; Gene Expression Regulation, Plant; Genes, Plant; Indoleacetic Acids; Nicotiana; Organophosphorus Compounds; Plant Growth Regulators; Plant Leaves; Plants, Genetically Modified; Promoter Regions, Genetic; Response Elements; Seedlings; Solanum lycopersicum

2006