chlorophyll-a has been researched along with diatoxanthin* in 21 studies
21 other study(ies) available for chlorophyll-a and diatoxanthin
Article | Year |
---|---|
Excitation relaxation dynamics of carotenoids constituting the diadinoxanthin cycle.
Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S Topics: Acetone; Carotenoids; Chlorophyll; Chlorophyll A; Ethanol; Ether; Light-Harvesting Protein Complexes; Xanthophylls | 2022 |
Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis.
Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely β-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 μmol photons m Topics: Acclimatization; beta Carotene; Chlorophyll; Euglena gracilis; Gene Expression Regulation; Light; Photosystem II Protein Complex; Xanthophylls; Zeaxanthins | 2020 |
The effect of different light regimes on pigments in Coscinodiscus granii.
The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow, red-orange, red, and white) at two intensities (100 and 300 µmol photons m Topics: beta Carotene; Chlorophyll; Diatoms; Light; Photosynthesis; Pigments, Biological; Xanthophylls; Zeaxanthins | 2019 |
Relaxation of cellular K
Regulation of photosynthetic light harvesting involves all major thylakoid membrane complexes. One important factor is the proton motive force (pmf) driving ATP production. Its proton gradient (ΔpH) component regulates the high energy quenching. Potassium ions largely contribute to the formation of the electric field (ΔΨ). ΔΨ and ΔpH partially compensate each other to form pmf. Whilst in plants considerable progress has been made in analyzing the interplay of H Topics: Chlorophyll; Chlorophyll A; Diatoms; Fluorescence; Hydrogen-Ion Concentration; Ionophores; Liposomes; Photosystem II Protein Complex; Potassium; Valinomycin; Xanthophylls | 2017 |
The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions. Topics: Chlorophyll; Chlorophyll A; Diatoms; Fluorescence; Gene Expression Regulation, Bacterial; Light; Light-Harvesting Protein Complexes; Photosynthesis; Protein Biosynthesis; RNA, Messenger; Xanthophylls | 2017 |
Differences in pigmentation between life cycle stages in Scrippsiella lachrymosa (dinophyceae).
Various life cycle stages of cyst-producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst-producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.2 ± 0.5 pg · cell(-1) ), whereas gamete pigment content was 22% lower. The pigment content of zygotes was 82% lower than vegetative cells, even though they appeared darker under the microscope. Zygotes of S. lachrymosa contained significantly higher cellular concentrations of β-carotene (0.65 ± 0.15 pg · cell(-1) ) than all other life stages. Photoprotective pigments and the de-epoxidation ratio of xanthophylls-cycle pigments in S. lachrymosa were significantly elevated in zygotes and cysts compared to other stages. This suggests a role for accessory pigments in combating intracellular oxidative stress during sexual reproduction or encystment. Resting cysts contained some pigments even though chloroplasts were not visible, suggesting that the brightly colored accumulation body contained photosynthetic pigments. The differences in pigmentation between life stages have implications for interpretation of pigment data from field samples when sampled during dinoflagellate blooms. Topics: beta Carotene; Chlorophyll; Dinoflagellida; Life Cycle Stages; Oxidative Stress; Photosynthesis; Pigmentation; Xanthophylls; Zygote | 2016 |
Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII.
The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino-2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light-harvesting role of this pigment in clade VII as in Tetraselmis. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Chlorophyta; Light; Lutein; Oceans and Seas; Photosynthesis; Pigments, Biological; Xanthophylls; Zeaxanthins | 2016 |
Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis.
The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean. Topics: Carrier Proteins; Chlorophyll; Chlorophyll A; Diatoms; Light; Light-Harvesting Protein Complexes; Photosystem II Protein Complex; Spectrometry, Fluorescence; Thylakoids; Xanthophylls | 2015 |
Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.
Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity. Topics: Acclimatization; Chlorophyll; Diatoms; Photons; Photosynthesis; Phytoplankton; Radiation; Xanthophylls | 2014 |
The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont.
The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l(-1)) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ(15)N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions. Topics: Ammonium Compounds; Analysis of Variance; Animals; Anthozoa; beta Carotene; Calcification, Physiologic; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Fluorescence; Hot Temperature; Indian Ocean; Nitrogen; Photosynthesis; Stress, Physiological; Symbiosis; Xanthophylls | 2013 |
Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching.
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms. Topics: Chlorophyll; Diatoms; Gene Silencing; Oxidoreductases; Photosynthesis; RNA Interference; Xanthophylls | 2012 |
Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile.
Chromophytes are an important group of microorganisms that contribute significantly to the carbon cycle on Earth. Their photosynthetic capacity depends on efficiency of the light-harvesting system that differs in pigment composition from that of green plants and other groups of algae. Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the main light-harvesting complex of Xanthonema debile, denoted XLH, which contains four carotenoids--diadinoxanthin, heteroxanthin, diatoxanthin, and vaucheriaxanthin--and Chl-a. Overall carotenoid-to-chlorophyll energy transfer efficiency is about 60%, but energy transfer pathways are excitation wavelength dependent. Energy transfer from the carotenoid S(2) state is active after excitation at both 490 nm (maximum of carotenoid absorption) and 510 nm (red edge of carotenoid absorption), but this channel is significantly more efficient after 510 nm excitation. Concerning the energy transfer pathway from the S(1) state, XLH contains two groups of carotenoids: those that have the S(1) route active (~25%) and those having the S(1) pathway silent. For a fraction of carotenoids that transfer energy via the S(1) channel, energy transfer is observed after both excitation wavelengths, though energy transfer times are different, yielding 3.4 ps (490 nm excitation) and 1.5 ps (510 nm excitation). This corresponds to efficiencies of the S(1) channel of ~85% that is rather unusual for a donor-acceptor pair consisting of a noncarbonyl carotenoid and Chl-a. Moreover, major carotenoids in XLH, diadinoxanthin and diatoxanthin, have their S(1) energies in solution lower than the energy of the acceptor state, Q(y) state of Chl-a. Thus, binding of these carotenoids to XLH must tune their S(1) energy to allow for efficient energy transfer. Besides the light-harvesting function, carotenoids in XLH also have photoprotective role; they quench Chl-a triplets via triplet-triplet energy transfer from Chl-a to carotenoid. Topics: Carotenoids; Chlorophyll; Chlorophyta; Energy Transfer; Light-Harvesting Protein Complexes; Xanthophylls | 2012 |
Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana.
In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane. Topics: Chlorophyll; Darkness; Diatoms; Electron Transport; Fluorescence; Light; Oxidation-Reduction; Oxygen; Photosynthesis; Xanthophylls | 2011 |
Pigment alterations in the brown mussel Perna perna.
Potential sex and/or gametogenic stage differences in the metabolism of chlorophyll-a and carotenoids in the brown mussel Perna perna of southern Brazil were studied using high performance liquid chromatography (HPLC). Carotenoids derived directly from diet (phytoplankton) were fucoxanthin plus diatoxanthin (diatoms), alloxanthin (cryptophytes) and zeaxanthin (mainly cyanobacteria). Females accumulated carotenoid-diols and epoxides (~3-4 mg/g-dry wt.) while males had much lower concentrations (~0.7 mg/g-dry wt.). An antioxidant/free radical scavenging role is proposed for carotenoids in females. Mean ratios of chlorophyll plus derivatives (Chlns-a) to carotenoids for male and female P. perna were 50:1 and 4:1, respectively. The higher ratio in males relates to both higher carotenoid contents in females plus higher total Chlns-a in males (~22 mg/g-dry wt.), relative to the females (~4 mg/g-dry wt.). Chlorophyll-a metabolism in both sexes followed two distinct pathways. First, cyclization of pyropheophorbide-a gave 13(2), 17(3)-cyclopheophorbide-a-enol (CPPaE) which was further oxidized to hydroxy-chlorophyllone. Second, chlorophyll-a derivatives retaining the 13(2)-carbomethoxy moiety were oxidized to purpurin-18 which was hydrolyzed to chlorin-p(6). In both cases, metabolism of dietary chlorophyll-a was oxidative and derivatives could either serve as antioxidants or merely be the results of non-specific digestive processes. Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Epoxy Compounds; Female; Male; Molecular Structure; Perna; Phytoplankton; Porphyrins; Xanthophylls; Zeaxanthins | 2008 |
A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
In the present study we report that in the diatom Cyclotella meneghiniana the diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence (NPQ) is heterogeneous and consists of three different components. (i) A transient NPQ component that generates immediately upon illumination, depends on the transthylakoid proton gradient as well as on the light intensity, and is modulated by the initial diatoxanthin content of the cells. It is located in the antenna complexes of C. meneghiniana and is comparable with the transient NPQ observed in vascular plants. (ii) A steady-state NPQ component is observed during later stages of the high-light illumination and depends on the diatoxanthin content formed by the light-activated diadinoxanthin cycle. (iii) A fast relaxing NPQ component is seen upon a transition of high-light-illuminated cells to complete darkness. This component relaxes within a time frame of tens of seconds and its extent is correlated with the amount of diatoxanthin formed during the phase of actinic illumination. It cannot be observed in dithiothreitol-treated cells where the de-epoxidation of diadinoxanthin to diatoxanthin is suppressed. The fast relaxing component can be interpreted as a relaxation of part of the steady-state NPQ. The different diatoxanthin-dependent components are characterized by different quenching efficiencies of diatoxanthin. Diatoxanthin involved in the transient NPQ exhibits a 2-fold higher quenching efficiency compared with diatoxanthin participating in the steady-state NPQ. It is proposed that the different quenching efficiencies of diatoxanthin are caused by the existence of different diatoxanthin pools within the antenna system of C. meneghiniana. Topics: beta Carotene; Chlorophyll; Diatoms; Fluorescence; Light; Photosynthesis; Signal Transduction; Time Factors; Xanthophylls | 2008 |
Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding.
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of the latter polypeptide is enhanced when FCPa is isolated from algae grown under HL conditions. This increase in Fcp6/7 polypeptides is accompanied by an increase in the pool of xanthophyll cycle pigments, diadinoxanthin and diatoxanthin, and a concomitant decrease in fucoxanthin content. In addition, the de-epoxidation ratio, i.e., the amount of diatoxanthin in relation to the pool of xanthophyll cycle pigments, is increased by a factor of 2. With regard to fluorescence yield, HL FCPa was quenched in comparison to LL FCPa. This is in accordance with the larger amount of diatoxanthin that is bound, which is supposed to act as a quencher like zeaxanthin in higher plants. Thus, we conclude that the enhanced content of diatoxanthin in FCPa plays a protective role, which is paralleled by a weakened light harvesting function due to a smaller amount of fucoxanthin. Topics: Blotting, Western; Chlorophyll; Diatoms; Light-Harvesting Protein Complexes; Spectrometry, Fluorescence; Xanthophylls | 2006 |
The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium.
Bleaching of corals by loss of symbiotic dinoflagellate algae and/or photosynthetic pigments is commonly triggered by elevated temperatures coupled with high irradiance, and is a first-order threat to coral reef communities. In this study, a high-resolution high-performance liquid chromatography method integrated with mass spectrometry was applied to obtain the first definitive identification of chlorophyll and carotenoid pigments of three clades of symbiotic dinoflagellate algae (Symbiodinium) in corals, and their response to experimentally elevated temperature and irradiance. The carotenoids peridinin, dinoxanthin, diadinoxanthin (Dn), diatoxanthin (Dt) and beta-carotene were detected, together with chlorophylls a and c2, and phaeophytin a, in all three algal clades in unstressed corals. On exposure to elevated temperature and irradiance, three coral species (Montastrea franksi and Favia fragum with clade B algae, and Montastrea cavernosa with clade C) bleached by loss of 50-80% of their algal cells, with no significant impact to chlorophyll a or c2, or peridinin in retained algal cells. One species (Agaricia sp. with clade C) showed no significant reduction in algal cells at elevated temperature and irradiance, but lost substantial amounts of chlorophyll a and carotenoid pigments, presumably through photo-oxidative processes. Two coral species (Porites astreoides and Porites porites both bearing clade A algae) did not bleach. The impact of elevated temperature and irradiance on the levels of the photoprotective xanthophylls (Dn + Dt) and beta-carotene varied among the corals, both in pool size and xanthophyll cycling, and was not correlated to coral bleaching resistance. Topics: Animals; Anthozoa; Cell Count; Chlorophyll; Chromatography, High Pressure Liquid; Eukaryota; Light; Mass Spectrometry; Phylogeny; Pigments, Biological; Symbiosis; Temperature; Xanthophylls | 2006 |
Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala.
In the present study we investigate how intraspecific (density-dependent) competition for nutrients by the diatom Nitzschia microcephala affects the level of oxidative stress in the algal cells as well as their production of pigments and thiamine. N. microcephala was grown in three different densities until the stationary growth phase was reached. Throughout the experiment, growth rate was negatively related to cell density. Superoxide dismutase activity, protein thiol, and diatoxanthin concentrations indicated increasing oxidative stress with increasing cell density, which was most probably caused by nutrient depletion of the medium. Pigment contents per cell (except for diatoxanthin) decreased with increasing cell density. N. microcephala was able to synthesize thiamine and its thiamine content per cell increased in concert with cell density. In comparison, the dinoflagellate Amphidinium carterae was unable to synthesize thiamine. These results suggest that cells of N. microcephala subjected to higher competition and lower growth rates have a lower carotenoid content and a higher thiamine content. If such responses would occur in nature as well, eutrophication (higher cell densities) may alter the quality of microalgae as food items for higher trophic levels not only by species shifts in the phytoplankton, but also by changes in the cellular nutritional value within species. Topics: Animals; Chlorophyll; Chlorophyll A; Diatoms; Dinoflagellida; Eutrophication; Oxidative Stress; Sulfhydryl Compounds; Superoxide Dismutase; Thiamine; Xanthophylls | 2003 |
In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching.
Non-photochemical fluorescence quenching (NPQ) in diatoms is associated with a xanthophyll cycle involving diadinoxanthin (DD) and its de-epoxidized form, diatoxanthin (DT). In higher plants, an obligatory role of de-epoxidized xanthophylls in NPQ remains controversial and the presence of a transthylakoid proton gradient (DeltapH) alone may induce NPQ. We used inhibitors to alter the amplitude of DeltapH and/or DD de-epoxidation, and coupled NPQ. No DeltapH-dependent quenching was detected in the absence of DT. In diatoms, both DeltapH and DT are required for NPQ. The binding of DT to protonated antenna sites could be obligatory for energy dissipation. Topics: Chlorophyll; Diatoms; Fluorescence; Photochemistry; Proton Pumps; Thylakoids; Xanthophylls | 2002 |
Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
Cd has pleiotropic effects on plant physiology and in particular on photosynthesis. It has not been established yet if Cd alters the functioning of the xanthophyll cycle. To answer this question, an exponentially growing culture of the marine diatom Phaeodactylum tricornutum was incubated with Cd (20 mg/l) for 24 h and irradiated with a light activating the xanthophyll cycle, which in diatoms, consists of the reversible deepoxidation of diadinoxanthin to diatoxanthin. The measurements show that the deepoxidation step is not influenced by Cd. In contrast, the Cd concentration used sharply inhibits the epoxidation of diatoxanthin to diadinoxanthin. Topics: Cadmium; Chlorophyll; Diatoms; Light; Photosynthesis; Spectrometry, Fluorescence; Xanthophylls | 2001 |
The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae.
The lifetimes of the first excited singlet states (2(1)A(g)) of diadinoxanthin and diatoxanthin, carotenoids involved in the xanthophyll cycle in some genera of algae, have been measured by femtosecond time-resolved optical spectroscopy to be 22.8 +/- 0.1 ps and 13.3 +/- 0.1 ps, respectively. Using the energy gap law for radiationless transitions set forth by Englman and Jortner (Mol. Phys. 18 (1970) 145-164), these lifetimes correspond to S1 excited state energies of 15210 cm-1 for diadinoxanthin and 14620 cm-1 for diatoxanthin. The lowest excited singlet state energy of Chl a has an energy of 14700 cm-1. The fact that the S1 state energy of diadinoxanthin lies above that of Chl a, whereas the S1 state energy of diatoxanthin lies below that of Chl a, suggests that the xanthophyll cycle involving the enzymatic interconversion of diadinoxanthin and diatoxanthin may play a role in regulating energy flow between these molecules and Chl a in many species of algae, essentially fulfilling a role identical to that proposed for violaxanthin and zeaxanthin in higher plants and green algae (Frank et al. (1994) Photosyn. Res. 41, 389-395). Topics: Carotenoids; Chlorophyll; Chlorophyll A; Energy Metabolism; Eukaryota; Hydrogen-Ion Concentration; Spectrometry, Fluorescence; Spectrophotometry; Thermodynamics; Xanthophylls | 1996 |