chlorophyll-a has been researched along with devrinol* in 2 studies
1 review(s) available for chlorophyll-a and devrinol
Article | Year |
---|---|
Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide.
Enantioselectivity of chiral pesticide enantiomers should be taken into consideration in pesticide application and environmental risk assessment. The phytotoxicity of the enantiomers of napropamide to cucumber, soybean, and the bioactivity to the target weeds Poa annua and Festuca arundinacea have been studied in this work. To the nontarget crops, the influences of napropamide on the root, shoot, fresh weight, chlorophyll, superoxide dismutase (SOD) and catalase (CAT) activities and membrane lipid peroxides have been studied. (-)-Napropamide was more toxic than the racemate and (+)-napropamide to soybean and cucumber in terms of root, shoot and fresh weight. The content of chlorophyll was not affected by napropamide. The impacts on the activities of SOD, CAT and membrane lipid peroxides showed that napropamide could induce the oxidative stress and rac-napropamide caused a stronger oxidative damage to cucumber and soybean than (-)-napropamide and (+)-napropamide. For the target weeds, the influences of napropamide on root, shoot and fresh weight have been studied. (-)-Napropamid was more active to P. annua, while rac-napropamide was more active to F. arundinacea. To reduce environmental pollution and improve the effectiveness of chiral pesticide, single enantiomer should be developed and produced. This work may provide evidence for developing optical pure product. Topics: Chlorophyll; Cucumis sativus; Glycine max; Herbicides; Naphthalenes; Oxidative Stress; Plant Proteins; Plant Weeds; Stereoisomerism; Structure-Activity Relationship; Superoxide Dismutase; Weed Control | 2015 |
1 other study(ies) available for chlorophyll-a and devrinol
Article | Year |
---|---|
Accumulation and residue of napropamide in alfalfa (Medicago sativa) and soil involved in toxic response.
Napropamide belongs to the amide herbicide family and widely used to control weeds in farmland. Intensive use of the herbicide has resulted in widespread contamination to ecosystems. The present study demonstrated an analysis on accumulation of the toxic pesticide napropamide in six genotypes of alfalfa (Medicago sativa), along with biological parameters and its residues in soils. Soil was treated with napropamide at 3 mg kg(-1) dry soil and alfalfa plants were cultured for 10 or 30 d, respectively. The maximum value for napropamide accumulation is 0.426 mg kg(-1) in shoots and 2.444 mg kg(-1) in roots. The napropamide-contaminated soil with alfalfa cultivation had much lower napropamide concentrations than the control (soil without alfalfa cultivation). Also, the content of napropamide residue in the rhizosphere was significantly lower than that in the non-rhizosphere soil. M. sativa exposed to 3 mg kg(-1) napropamide showed inhibited growth. Further analysis revealed that plants treated with napropamide accumulated more reactive oxygen species (O(2)(-) and H(2)O(2)) and less amounts of chlorophyll. However, not all cultivars showed oxidative injury, suggesting that the alfalfa cultivars display different tolerance to napropamide. Topics: Chlorophyll; Genotype; Herbicides; Hydrogen Peroxide; Medicago sativa; Naphthalenes; Oxidative Stress; Reactive Oxygen Species; Rhizosphere; Soil; Soil Pollutants | 2011 |