chlorophyll-a and cyclonite

chlorophyll-a has been researched along with cyclonite* in 2 studies

Other Studies

2 other study(ies) available for chlorophyll-a and cyclonite

ArticleYear
Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B" (RDX/TNT) in amended soil.
    Environmental science and pollution research international, 2014, Volume: 21, Issue:13

    Unexploded explosives that include royal demolition explosive (RDX) and trinitrotoluene (TNT) cause environmental concerns for surrounding ecosystems. Baccharis halimifolia is a plant species in the sunflower family that grows naturally near munitions sites on contaminated soils, indicating that it might have tolerance to explosives. B. halimifolia plants were grown on 100, 300, and 750 mg kg(-1) of soil amended with composition B (Comp B) explosive, a mixture of royal demolition explosive and trinitrotoluene. These concentrations are environmentally relevant to such munitions sites. The purpose of the experiment was to mimic contaminated sites to assess the plant's physiological response and uptake of explosives and to identify upregulated genes in response to explosives in order to better understand how this species copes with explosives. Stomatal conductance was not significantly reduced in any treatments. However, net photosynthesis, absorbed photons, and chlorophyll were significantly reduced in all treatments relative to the control plants. The dark-adapted parameter of photosynthesis was reduced only in the 750 mg kg(-1) Comp B treatment. Thus, we observed partial physiological tolerance to Comp B in B. halimifolia plants. We identified and cloned 11 B. halimifolia gene candidates that were orthologous to explosive-responsive genes previously identified in Arabidopsis and poplar. Nine of those genes showed more than 90% similarity to Conyza canadensis (horseweed), which is the closest relative with significant available genomics resources. The expression patterns of these genes were studied using quantitative real-time PCR. Three genes were transcriptionally upregulated in Comp B treatments, and the Cytb6f gene was found to be highly active in all the tested concentrations of Comp B. These three newly identified candidate genes of this explosives-tolerant plant species can be potentially exploited for uses in phytoremediation by overexpressing these genes in transgenic plants and, similarly, by using promoters or variants of promoters from these genes fused to reporter genes in transgenic plants for making phytosensors to report the localized presence of explosives in contaminated soils.

    Topics: Arabidopsis; Baccharis; Biodegradation, Environmental; Chlorophyll; Ecosystem; Environmental Monitoring; Environmental Pollution; Explosive Agents; Gene Expression; Plants; Soil; Soil Pollutants; Triazines; Trinitrotoluene

2014
Phytotoxicity to and uptake of RDX by rice.
    Environmental pollution (Barking, Essex : 1987), 2007, Volume: 145, Issue:3

    Phytoremediation is an emerging strategy to remediate soils contaminated with pollutants like explosives in which plants will uptake, degrade and/or accumulate pollutants. To implement this technology on a site contaminated with RDX, we chose rice, which is able to grow in lagoons, and we tested its ability to grow in soils with high levels of RDX and to decrease RDX concentrations in soil. Rice was grown for 40 days in soil contaminated with increasing [14C]RDX concentrations. Emergence and growth were not affected by RDX. Total chlorophyll content decreased with RDX concentrations of over 500 mg kg(-1). Amounts of chlorophyll were correlated with the appearance of necrosis in leaf extremities. After 40 days, rice translocated 89% of uptaken radioactivity to leaves with 90% in leaf extremities. Analyzes of leaf extracts showed that 95% of radioactivity was RDX in its parent form. Necrosis appears to be a phytotoxic symptom of RDX accumulation.

    Topics: Biodegradation, Environmental; Carbon Radioisotopes; Chlorophyll; Explosive Agents; Germination; Oryza; Plant Leaves; Rodenticides; Soil; Soil Pollutants; Triazines

2007