chlorophyll-a has been researched along with cupric-chloride* in 6 studies
6 other study(ies) available for chlorophyll-a and cupric-chloride
Article | Year |
---|---|
Photosynthetic and biochemical responses of the freshwater green algae Closterium ehrenbergii Meneghini (Conjugatophyceae) exposed to the metal coppers and its implication for toxicity testing.
Topics: Antioxidants; Cell Death; Chlorophyll; Closterium; Copper; Copper Sulfate; Fresh Water; Lipid Peroxidation; Metals; Oxidation-Reduction; Photosynthesis; Pigments, Biological; Reactive Oxygen Species; Superoxide Dismutase; Water Pollutants, Chemical | 2018 |
Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.
Although interactions of metallic nanoparticles (NPs) with various microorganisms have been previously explored, few studies have examined how metal sensitivity impacts NP toxicity. The present study investigated the effects of copper NPs (Cu-NP) exposure on the model alga Chlamydomonas reinhardtii in the presence and absence of the essential micronutrient copper. The toxic ranges for Cu-NPs and the ionic control, CuCl2 , were determined using a high-throughput adenosine triphosphate (ATP)-based fluorescence assay. The Cu-NPs caused similar mortality in copper-replete and copper-deplete cells (median inhibitory concentration [IC50]: 14-16 mg/L) but were less toxic than the ionic control, CuCl2 (IC50: 7 mg/L). Using this concentration range, the Cu-NP impacts on cell morphology, copper accumulation, chlorophyll content, and expression of stress genes under both copper supply states were assessed. Osmotic swelling, membrane damage, and chloroplast and organelle disintegration were observed by transmission electron microscopy at both conditions. Despite these similarities, copper-deplete cells showed greater accumulation of loosely bound and tightly bound copper after exposure to Cu-NPs. Furthermore, copper-replete cells experienced greater loss of chlorophyll content, 19% for Cu-NPs, compared with only an 11% net decrease in copper-deplete cells. The tightly bound copper was bioavailable as assessed by reverse-transcriptase quantitative polymerase chain reaction analysis of CYC6, a biomarker for Cu deficiency. The increased resistance of copper-deplete cells to Cu-NPs suggests that these cells potentially metabolize excess Cu-NPs or better manage sudden influxes of ions. The results suggest that toxicity assessments must account for the nutritional status of impacted organisms and use toxicity models based on estimations of the bioavailable fractions. Topics: Chlamydomonas reinhardtii; Chlorophyll; Chloroplasts; Copper; Metal Nanoparticles; Organelles; Osmosis | 2016 |
Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum).
The environmental impacts of Cu-based nanoparticles (NPs) are not well understood. In this study, cilantro (Coriandrum sativum) was germinated and grown in commercial potting mix soil amended with Cu(OH)2 (Kocide and CuPRO), nano-copper (nCu), micro-copper (μCu), nano-copper oxide (nCuO), micro-copper oxide (μCuO) and ionic Cu (CuCl2) at either 20 or 80 mg Cu per kg. In addition to seed germination and plant elongation, relative chlorophyll content and micro and macroelement concentrations were determined. At both concentrations, only nCuO, μCuO, and ionic Cu, showed statistically significant reductions in germination. Although compared with control, the relative germination was reduced by ∼50% with nCuO at both concentrations, and by ∼40% with μCuO, also at both concentrations, the difference among compounds was not statistically significant. Exposure to μCuO at both concentrations and nCu at 80 mg kg(-1) significantly reduced (p≤ 0.05) shoot elongation by 11% and 12.4%, respectively, compared with control. Only μCuO at 20 mg kg(-1) significantly reduced (26%) the relative chlorophyll content, compared with control. None of the treatments increased root Cu, but all of them, except μCuO at 20 mg kg(-1), significantly increased shoot Cu (p≤ 0.05). Micro and macro elements B, Zn, Mn, Ca, Mg, P, and S were significantly reduced in shoots (p≤ 0.05). Similar results were observed in roots. These results showed that Cu-based NPs/compounds depress nutrient element accumulation in cilantro, which could impact human nutrition. Topics: Chlorophyll; Copper; Coriandrum; Germination; Metal Nanoparticles; Plant Roots; Soil Pollutants | 2015 |
Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants.
Our study highlights the use of the DNA repair gene MtTdp2α as a tool for improving the plant response to heavy metal stress. Tyrosyl-DNA phosphodiesterase 2 (Tdp2), involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signalling in animal cells, is still poorly characterised in plants. The Medicago truncatula lines Tdp2α-13c and Tdp2α-28 overexpressing the MtTdp2α gene and control (CTRL) line were exposed to 0.2 mM CuCl2. The DNA diffusion assay revealed a significant reduction in the percentage of necrosis caused by copper in the aerial parts of the Tdp2α-13c and Tdp2α-28 plants while neutral single cell gel electrophoresis highlighted a significant decrease in double strand breaks (DSBs), compared to CTRL. In the copper-treated Tdp2α-13c and Tdp2α-28 lines there was up-regulation (up to 4.0-fold) of genes encoding the α and β isoforms of Tyrosyl-DNA phosphodiesterase 1, indicating the requirement for Tdp1 function in the response to heavy metals. As for DSB sensing, the MtMRE11, MtRAD50 and MtNBS1 genes were also significantly up-regulated (up to 2.3-fold) in the MtTdp2α-overexpressing plants grown under physiological conditions, compared to CTRL line, and then further stimulated in response to copper. The basal antioxidant machinery was always activated in all the tested lines, as indicated by the concomitant up-regulation of MtcytSOD and MtcpSOD genes (cytosolic and chloroplastic Superoxide Dismutase), and MtMT2 (type 2 metallothionein) gene. The role of MtTdp2α gene in enhancing the plant response to genotoxic injury under heavy metal stress is discussed. Topics: Antioxidants; Cell Death; Cell Survival; Chlorophyll; Copper; DNA Breaks, Double-Stranded; DNA Damage; DNA Repair; Gene Expression Regulation, Plant; Medicago truncatula; Metals, Heavy; Phosphoric Diester Hydrolases; Superoxide Dismutase | 2014 |
Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress.
The present work aimed to study the physiological effects of cadmium (Cd) and copper (Cu) in pea (Pisum sativum). Pea plants were exposed to increasing doses of cadmium chloride (CdCl2) and copper chloride (CuCl2) for 20 d. The examined parameters, namely root and shoot lengths, the concentration of photosynthetic pigments and the rate of photosynthesis were affected by the treatments especially with high metals concentrations. The analysis of heavy metals accumulation shows that leaves significantly accumulate cadmium for all the tested concentrations. However, copper was significantly accumulated only with the highest tested dose. This may explain the higher inhibitory effects of cadmium on photosynthesis and growth in pea plants. These results are valuable for understanding the biological consequences of heavy metals contamination particularly in soils devoted to organic agriculture. Topics: beta Carotene; Cadmium Chloride; Chlorophyll; Chlorophyll A; Copper; Photosynthesis; Pisum sativum; Plant Leaves; Soil Pollutants | 2009 |
Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity.
Species differences in heavy metal tolerance were investigated by comparing the responses of Dunaliella tertiolecta and Dunaliella salina to elevated concentrations of CuCl2. Although both species showed reduced cell number ml(-1) of algal culture, D. salina was more affected by increase in CuCl2. This reflects higher sensitivity of D. salina to CuCl2 compared to D. tertiolecta. Total chlorophyll in terms of microg ml(-1) was higher in D. tertiolecta at all tested CuCl2 levels, but in terms of microg cell(-1) no significant difference was observed between the two species. Total carotenoids in microg cell(-1) increased with increase in CuCl2 in both species and it was about five times higher in D. salina at all CuCl2 concentrations. While both species showed significant increase in lipid peroxidation at elevated CuCl2, the malondialdehyde content of D. salina cells was about three times higher at most CuCl2 concentrations. Although ascorbate peroxidase (APX) activity increased with increase in CuCl2 levels in both species, higher activity was observed in D. tertiolecta at all tested CuCl2 concentrations. Cu content of D. salina cells was higher than D. tertiolecta which may be due to larger volume of D. salina cells. In conclusion, since hydroxyl radical (HO*) produced from H2O2 by Cu2+ (Haber-Weiss cycle) is involved in lipid peroxidation, higher ascorbate peroxidase activity in D. tertiolecta may partly account for lower sensitivity of this species to CuCl2 compared to D. salina. Topics: Ascorbate Peroxidases; Chlorophyll; Chlorophyta; Copper; Dose-Response Relationship, Drug; Hydroxyl Radical; Lipid Peroxidation; Metals, Heavy; Peroxidases; Pigments, Biological; Sensitivity and Specificity; Species Specificity | 2005 |