chlorophyll-a has been researched along with calcium-nitrate* in 2 studies
2 other study(ies) available for chlorophyll-a and calcium-nitrate
Article | Year |
---|---|
Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO(3))(2) stress.
The effects of 0.1 μM 24-epibrassinolide (EBL) on plant growth (plant height, leaf area, fresh weight, and dry weight), chlorophyll content, photosynthetic characteristics, antioxidant enzymes, and chloroplast ultrastructure were investigated using cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) with 80 mM Ca(NO(3))(2) to induce stress. The presence of Ca(NO(3))(2) caused significant reductions in net photosynthetic rate (P(N)), stomatal conductance (Gs), intercellular CO(2) concentration (Ci), and transpiration rate (Tr) of leaves. In addition, Ca(NO(3))(2) markedly reduced the chlorophyll content and inhibited photochemical activity, including the actual photochemical efficiency (ΦPSII). In contrast, EBL increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosynthesis caused by the Ca(NO(3))(2). The application of EBL to the plants subjected to Ca(NO(3))(2)-enhanced photochemical activity. EBL protected the photosynthetic membrane system from oxidative damage due to up-regulating the capacity of the antioxidant systems. Microscopic analyses revealed that Ca(NO(3))(2) affected the structure of the photosynthetic apparatus and membrane system and induced damage of granal thylakoid layers, while EBL recovered the typical shape of chloroplasts and promoted the formation of grana. Taken together, EBL compensated for damage/losses by Ca(NO(3))(2) due to the regulation of photosynthetic characteristics and the antioxidant system. Topics: Antioxidants; Brassinosteroids; Calcium Compounds; Chlorophyll; Chloroplasts; Cucumis sativus; Nitrates; Photosynthesis; Plant Growth Regulators; Plant Leaves; Seedlings; Steroids, Heterocyclic; Stress, Physiological | 2012 |
Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.
A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems. Topics: Abietanes; alpha-Tocopherol; Antioxidants; Calcium Compounds; Chlorophyll; Diterpenes; Fertilizers; Gene Expression Regulation, Plant; Genes, Plant; Homeostasis; Kinetin; Nitrates; Photosynthesis; Plant Extracts; Plant Leaves; Plant Stomata; Plant Transpiration; Potassium Compounds; RNA, Plant; Salt-Tolerant Plants; Salvia officinalis; Sodium Chloride; Stress, Physiological; Vitamin E | 2011 |