chlorophyll-a has been researched along with boric-acid* in 3 studies
3 other study(ies) available for chlorophyll-a and boric-acid
Article | Year |
---|---|
Meloidogyne incognita population control and nutritional status and productivity of Thompson seedless grapevines managed with different treatments.
A two-year field trial was conducted in a vineyard (northern Egypt)cultivated with Thompson seedless grapevines to evaluate the effectiveness of four "alternative" (biological/chemical) treatments, Bacillus megaterium, boric acid, calcium nitrate and chitosan, against the root-knot nematode Meloidogyne incognita (Mi), compared to that of the nematicide oxamyl. The influence of these treatments on plant nutritional status and fruit yield and quality was also assessed. All treatments significantly inhibited Mi reproduction parameters in both seasons, decreasing the numbers of nematode galls and egg masses (roots) and of second-stage juveniles (soil). Oxamyl application resulted in the highest reductions in Mi-reproduction parameters, followed by boric acid, which also showed the highest relative nematicidal efficacy (respect to oxamyl). In the 1st season, the highest fruit yield (10.34 kg/grapevine) was recorded from boric acid-treated plants, followed by that from oxamyl-treated plants (7.50 kg/grapevine); in the subsequent season (2019), oxamyl use led to the highest yield, followed by boric acid + chitosan use (10.04 and 8.62 kg/grapevine, respectively). In both seasons, application of boric acid alone and combined with chitosan enhanced the total soluble solids (TSS)/total acidity ratio in grape juice. All treatments led to higher nutrient contents (leaf petioles) and chlorophyll levels (leaves) as well as enhanced fruit size and weight. We conclude that the tested treatments can be safely applied for nematode management in Thompson seedless grapevines, with positive effects on fruit yield and quality. Topics: Animals; Antinematodal Agents; Boric Acids; Carbamates; Chitosan; Chlorophyll; Egypt; Fruit; Fruit and Vegetable Juices; Nutritional Status; Population Control; Seasons; Tylenchoidea; Vitis | 2020 |
Antioxidant responses of chickpea plants subjected to boron toxicity.
This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three-week-old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H(3)BO(3)) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought-tolerant Gökce and decreased in the drought-sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to scavenge reactive oxygen species and thus suppress lipid peroxidation under B stress. To the best of our knowledge, this is the first report on the antioxidant response of chickpea seedlings to B toxicity. Topics: Antioxidants; Ascorbate Peroxidases; Biological Transport; Boric Acids; Boron; Catalase; Chlorophyll; Cicer; Dehydration; Glutathione Reductase; Lipid Peroxidation; Oxidative Stress; Peroxidase; Peroxidases; Photosynthesis; Plant Proteins; Plant Shoots; Superoxide Dismutase | 2009 |
Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana.
Sugars such as glucose function as signal molecules that regulate gene expression, growth, and development in plants, animals, and yeast. To understand the molecular mechanisms of sugar responses, we isolated and characterized an Arabidopsis thaliana mutant, high sugar response8 (hsr8), which enhances sugar-responsive growth and gene expression. Light-grown hsr8 plants exhibited increased starch and anthocyanin and reduced chlorophyll content in response to glucose treatment. Dark-grown hsr8 seedlings showed glucose-hypersensitive hypocotyl elongation and development. The HSR8 gene, isolated using map-based cloning, was allelic to the MURUS4 (MUR4) gene involved in arabinose synthesis. Dark-grown mur1 and mur3 seedlings also exhibited similar sugar responses to hsr8/mur4. The sugar-hypersensitive phenotypes of hsr8/mur4, mur1, and mur3 were rescued by boric acid, suggesting that alterations in the cell wall cause hypersensitive sugar-responsive phenotypes. Genetic analysis showed that sugar-hypersensitive responses in hsr8 mutants were suppressed by pleiotropic regulatory locus1 (prl1), indicating that nucleus-localized PRL1 is required for enhanced sugar responses in hsr8 mutant plants. Microarray analysis revealed that the expression of many cell wall-related and sugar-responsive genes was altered in mur4-1, and the expression of a significant proportion of these genes was restored to wild-type levels in the mur4-1 prl1 double mutant. These findings reveal a pathway that signals changes in the cell wall through PRL1 to altered gene expression and sugar-responsive metabolic, growth, and developmental changes. Topics: Anthocyanins; Arabidopsis; Arabidopsis Proteins; Arabinose; Boric Acids; Carbohydrates; Cell Nucleus; Cell Wall; Chlorophyll; Cloning, Molecular; Darkness; Gene Expression Profiling; Gene Expression Regulation, Plant; Glucose; Hypocotyl; Mutation; Phenotype; Seedlings; Signal Transduction; Starch | 2007 |