chlorophyll-a has been researched along with aluminum-sulfate* in 4 studies
4 other study(ies) available for chlorophyll-a and aluminum-sulfate
Article | Year |
---|---|
Effects of aluminate flocculant on turion germination and seedling growth of Potamogeton crispus.
Aluminate flocculants are employed widely in water treatment for precipitating suspended solids and emergency treatment of algal blooms in eutrophic lake, but the residual aluminum (Al) may have phytotoxic effects on aquatic organisms after entering aquatic ecosystems. To elucidate the potential impacts of Al on turion germination and early growth in Potamogeton crispus, we conducted a mesocosm experiment using five Al concentrations (0 (control group), 0.3, 0.6, 1.2, and 1.5mg/L) in alum solutions. The results showed that the germination of turions and the early growth of P. crispus were reduced and inhibited by Al. The maximum numbers of germinating turions and newly-formed seedlings occurred in the control group, and their numbers declined in the end of the experiment as the Al concentration increased. Al at a concentration of 1.5mg/L decreased the number of germinating turions 3.0 times and the number of newly-formed seedlings 30.7 times compared with the control. The chlorophyll content and root activity decreased when the Al concentration increased. The maximum soluble protein contents in seedling tissues (1.953mg/g fresh weight) occurred in the 0.6mg/L treatment group, which differed significantly from the other treatment groups. The Al contents in the seedling tissues had a significant positive correlation with the Al treatment concentrations (P<0.05, r=0.763), but negative correlations with the biomass, root number, stem weight, soluble protein, and root activity (r=-0.935, -0.975, -0.907, -0.721, -0.944, respectively). Persistent Al concentration ≥1.2mg/L significantly decreased the germination of turions and seedling growth in P. crispus. These results may facilitate the restoration of aquatic macrophytes and ecological risk assessments in Al-exposed lakes. Topics: Alum Compounds; Biomass; Chlorophyll; Flocculation; Germination; Potamogetonaceae; Seedlings; Water Pollutants, Chemical | 2017 |
Influence of alum on cyanobacterial blooms and water quality of earthen fish ponds.
Eruption of blue-green algal blooms occurs frequently in eutrophic lakes and fish ponds, with associated unpleasant odor and horrid scums. In the present study, we conducted a pre-test experiment in 3 m(3) outdoor concrete ponds to determine the optimum concentration of aluminum sulfate (alum) required for reduction of the cyanobacterial blooms without negative effect on fish growth. As a consequence, 10 mg L(-1) alum was named as the optimum concentration that was applied in 1000 m(3) earthen fish ponds. Obtained results showed that Secchi disc values significantly increased from 10 to 24 cm after 14 days of alum application. Alum-treated ponds showed a reduction in total phytoplankton counts by 94 and 96% compared to the corresponding controls after 10 and 14 days, respectively. Abundance of blue-green algae in the treated ponds was decreased by 98% compared to the corresponding control after 14 days of alum application. Consequently, dissolved oxygen, pH, total phosphorus, orthophosphate, and chlorophyll "a" content declined significantly. Our study revealed that using 10 mg L(-1) of alum is an effective way to control cyanobacterial blooms in eutrophic waters, especially in fish ponds, without negative effect in water quality. Topics: Alum Compounds; Animals; Chlorophyll; Chlorophyll A; Cyanobacteria; Eutrophication; Fishes; Phosphorus; Phytoplankton; Ponds; Water Quality | 2015 |
The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments.
Microcosm and bottle experiments were conducted to evaluate the effects of alum treatment on cyanobacteria-lysing organisms and microcystin-degrading bacteria as well as Microcystis cells, and to provide detailed evidence of Microcystis cell damage by investigating precipitated Microcystis cells. The alum concentration to be pH 6.0 is the maximum which does not cause toxicity by monomeric Al, therefore, this concentration was defined as maximum dose. Microcystis cells were considerably damaged by the alum treatment with maximum dose and long contact time. Seven days post-treatment, intracellular microcystin-LR was released into the extracellular environment in excess of 95 percent and chlorophyll a is not easily released from inside the cell, chl.a of precipitated Microcystis cells was also decreased to approximately 50 percent. Moreover, alum treatment caused damage to cyanobacteria-lysing organisms and microcystin-degrading bacteria, as well as to Microcystis cells. Therefore, it could be concluded that alum treatment with maximum dose (48 mg L(-1) as AI) is not suitable for removing cyanobacterial bloom without the release of cyanotoxin in reservoirs and ponds. Topics: Alum Compounds; Bacteria; Chlorophyll; Chlorophyll A; Cyanobacteria; Lakes; Microcystins; Microcystis | 2013 |
Suitability of altai wildrye (Elymus angustus) and slender wheatgrass (Agropyron trachycaulum) for initial reclamation of saline composite tailings of oil sands.
The reclamation of freshly produced composite or consolidated tailings (CT) is a challenge for the Oil Sands Industry in the boreal forest of Western Canada. CT tailings materials are characterized by a relatively high salinity (dominated by sodium, sulphate and chloride) and a high pH (8-9). A greenhouse study was conducted to determine the germination, survival, injury and early plant growth of two grass species recommended for land reclamation, altai wildrye (Elymus angustus Trin) and slender wheatgrass (Agropyron trachycaulum Link Malte), growing in two different oil sand CT tailings (alum-CT and gypsum-CT), with and without peat amendment. Ion accumulation in the resulting plant tissues was determined. Our results showed that slender wheatgrass was most affected by the tailings at the germination stage, while for altai wildrye, the early growth stage was the most sensitive stage. Alum-CT had similar or less negative impact on plants than gypsum-CT. Amendment of CT with peat limited the reduction in germination and growth that was recorded in plants growing directly in CT. Based on these results, recommendations were made to improve reclamation strategies. Topics: Agropyron; Alum Compounds; Biodegradation, Environmental; Calcium Sulfate; Chlorophyll; Elymus; Germination; Industrial Waste; Petroleum; Plant Roots; Plant Shoots; Salinity; Sodium; Soil | 2004 |