chlorophyll-a has been researched along with 8-azidoadenosine-5--triphosphate* in 2 studies
2 other study(ies) available for chlorophyll-a and 8-azidoadenosine-5--triphosphate
Article | Year |
---|---|
The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2.
The human ATP-binding cassette transporter, ABCG2, confers resistance to multiple chemotherapeutic agents and also affects the bioavailability of different drugs. [(125)I]Iodoarylazidoprazosin (IAAP) and [(3)H]azidopine were used for photoaffinity labeling of ABCG2 in this study. We show here for the first time that both of these photoaffinity analogues are transport substrates for ABCG2 and that [(3)H]azidopine can also be used to photolabel both wild-type R482-ABCG2 and mutant T482-ABCG2. We further used these assays to screen for potential substrates or modulators of ABCG2 and observed that 1,4-dihydropyridines such as nicardipine and nifedipine, which are clinically used as antihypertensive agents, inhibited the photolabeling of ABCG2 with [(125)I]IAAP and [(3)H]azidopine as well as the transport of these photoaffinity analogues by ABCG2. Furthermore, [(3)H]nitrendipine and bodipy-Fl-dihydropyridine accumulation assays showed that these compounds are transported by ABCG2. These dihydropyridines also inhibited the efflux of the known ABCG2 substrates, mitoxantrone and pheophorbide-a, from ABCG2-overexpressing cells, and nicardipine was more potent in inhibiting this transport. Both nicardipine and nifedipine stimulated the ATPase activity of ABCG2, and the nifedipine-stimulated activity was inhibited by fumitremorgin C, suggesting that these agents might interact at the same site on the transporter. In addition, nontoxic concentrations of dihydropyridines increased the sensitivity of ABCG2-expressing cells to mitoxantrone by 3-5-fold. In aggregate, results from the photoaffinity labeling and efflux assays using [(125)I]IAAP and [(3)H]azidopine demonstrate that 1,4-dihydropyridines are substrates of ABCG2 and that these photolabels can be used to screen new substrates and/or inhibitors of this transporter. Topics: Adenosine Triphosphate; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Azides; Calcium Channel Blockers; Cell Line; Chlorophyll; Dihydropyridines; Drug Interactions; Humans; Mitoxantrone; Neoplasm Proteins; Nicardipine; Nifedipine; Photoaffinity Labels; Prazosin | 2006 |
Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin.
Curcumin (curcumin I), demethoxycurcumin (curcumin II), and bisdemethoxycurcumin (curcumin III) are the major forms of curcuminoids found in the turmeric powder, which exhibit anticancer, antioxidant, and anti-inflammatory activities. In this study, we evaluated the ability of purified curcuminoids to modulate the function of either the wild-type 482R or the mutant 482T ABCG2 transporter stably expressed in HEK293 cells and drug-selected MCF-7 FLV1000 and MCF-7 AdVp3000 cells. Curcuminoids inhibited the transport of mitoxantrone and pheophorbide a from ABCG2-expressing cells. However, both cytotoxicity and [(3)H]curcumin I accumulation assays showed that curcuminoids are not transported by ABCG2. Nontoxic concentration of curcumin I, II, and III sensitized the ABCG2-expressing cells to mitoxantrone, topotecan, SN-38, and doxorubicin. This reversal was not due to reduced expression because ABCG2 protein levels were unaltered by treatment with 10 mumol/L curcuminoids for 72 hours. Curcumin I, II, and III stimulated (2.4- to 3.3-fold) ABCG2-mediated ATP hydrolysis and the IC(50)s were in the range of 7.5 to 18 nmol/L, suggesting a high affinity of curcuminoids for ABCG2. Curcuminoids also inhibited the photolabeling of ABCG2 with [(125)I]iodoarylazidoprazosin and [(3)H]azidopine as well as the transport of these two substrates in ABCG2-expressing cells. Curcuminoids did not inhibit the binding of [alpha-(32)P]8-azidoATP to ABCG2, suggesting that they do not interact with the ATP-binding site of the transporter. Collectively, these data show that, among curcuminoids, curcumin I is the most potent modulator of ABCG2 and thus should be considered as a treatment to increase the efficacy of conventional chemotherapeutic drugs. Topics: Adenosine Triphosphate; Anticarcinogenic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Azides; Biological Transport; Chlorophyll; Curcumin; Dihydropyridines; Drug Resistance, Neoplasm; Humans; Hydrolysis; Mitoxantrone; Mutation; Neoplasm Proteins; Prazosin; Toxicity Tests; Tumor Cells, Cultured | 2006 |