chlorogenic-acid has been researched along with protocatechuic-acid* in 2 studies
2 other study(ies) available for chlorogenic-acid and protocatechuic-acid
Article | Year |
---|---|
Alkyl and phenolic glycosides from Saussurea stella.
One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%. Topics: Animals; Anti-Inflammatory Agents; Coumaric Acids; Disaccharides; Female; Flavonoids; Furans; Glucosides; Glucuronidase; Glycosides; Hydroxybenzoates; Inflammation; Isoflavones; Lignans; Male; Molecular Structure; Neutrophils; Phytotherapy; Plant Extracts; Platelet Activating Factor; Quinic Acid; Rats, Wistar; Saussurea | 2013 |
An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism.
Athrixia phylicoides DC. is an aromatic shrub indigenous to the eastern parts of Southern Africa. Indigenous communities brew "bush tea" from dried twigs and leaves of A. phylicoides, which is consumed as a beverage and used for its medicinal properties. Plant polyphenols have been shown to be beneficial to Type 2 diabetes mellitus (T2D) and obesity. Aqueous extracts of the plant have been shown to be rich in polyphenols, in particular phenolic acids, which may enhance glucose uptake and metabolism. The aim of this study was to determine the phenolic composition of a hot water A. phylicoides extract and assess its in vitro effect on cellular glucose utilisation. The most abundant phenolic compounds in the extract were 6-hydroxyluteolin-7-O-glucoside, chlorogenic acid, protocatechuic acid, a di-caffeoylquinic acid and a methoxy-flavonol derivative. The extract increased glucose uptake in C2C12, Chang and 3T3-L1 cells, respectively. Intracellular glucose was utilised by both oxidation (C2C12 myocytes and Chang cells; p < 0.01 and p < 0.05, respectively) and by increased glycogen storage (Chang cells; p < 0.05). No cytotoxicity was observed in Chang cells at the concentrations tested. The effects of the extract were not dose-dependent. A. phylicoides aqueous extract stimulated in vitro glucose uptake and metabolism, suggesting that consumption of this phenolic-rich extract could potentially ameliorate metabolic disorders related to obesity and T2D. Topics: 3T3-L1 Cells; Africa, Southern; Animals; Asteraceae; Chlorogenic Acid; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Glucose; Glycogen; Hydroxybenzoates; Luteolin; Mice; Phenols; Plant Extracts; Plants, Medicinal; Quinic Acid | 2012 |