chlorogenic-acid has been researched along with ferulic-acid* in 10 studies
1 trial(s) available for chlorogenic-acid and ferulic-acid
Article | Year |
---|---|
Impact of dose on the bioavailability of coffee chlorogenic acids in humans.
Single servings of coffee beverage containing low (412 μmol), medium (635 μmol) and high (795 μmol) amounts of chlorogenic acids were administered to eleven healthy volunteers in a double-blind randomised controlled trial. Analysis of plasma and urine collected for 24 h revealed the presence of 12 metabolites in plasma and 16 metabolites in urine, principally in the form of sulphates, and to a lesser extent glucuronides of caffeic, ferulic, dihydrocaffeic and dihydroferulic acids, as well as intact feruloylquinic and caffeoylquinic acids, and sulphated caffeoylquinic acid lactones. Median values of peak plasma concentrations after increasing doses of chlorogenic acids were 1088, 1526 and 1352 nM. In urine the median amounts of metabolites excreted after 24 h following consumption of the three coffees were 101, 160 and 125 μmol, accounting for 24%, 25% and 16% of the doses ingested. Peak plasma concentration and urinary excretion values showed trends towards a reduced bioavailability of chlorogenic acids associated with the highest dose ingested, when expressed as percentages of intake. Potential biomarkers of coffee intake were identified as feruloylquinic acids and sulphated caffeoylquinic acid lactones in plasma and urine with positive moderate to strong coefficients of determination for peak plasma concentrations (0.60-0.81) and amounts excreted in urine (0.36-0.73) (P < 0.05). Topics: Adult; Biological Availability; Caffeic Acids; Chlorogenic Acid; Chromatography, High Pressure Liquid; Coffee; Coumaric Acids; Cross-Over Studies; Dose-Response Relationship, Drug; Double-Blind Method; Female; Glucuronides; Healthy Volunteers; Humans; Male; Quinic Acid; Young Adult | 2014 |
9 other study(ies) available for chlorogenic-acid and ferulic-acid
Article | Year |
---|---|
Citrate and hydroxycinnamate derivatives from Mume Fructus protect LPS-injured intestinal epithelial cells by regulating the FAK/PI3K/AKT signaling pathway.
Mume Fructus (MF) is processed from the near-ripe fruit of Prunus mume (Siebold) Siebold & Zucc by drying at low temperature until the color turns black. MF is often used in Chinese medicine for the treatment of chronic diarrhea and dysentery. Previous studies have shown that the active components of MF against Crohn's disease (CD) are mainly citrate and hydroxycinnamate derivatives, which can alleviate the CD-induced inflammatory response and intestinal barrier damage. However, their molecular mechanisms on CD still need further elucidation.. To investigate the protective effects and underlying mechanisms of citrate and hydroxycinnamate derivatives in MF on intestinal epithelial injury.. Network pharmacology technology was used to predict the anti-CD targets and molecular mechanisms of 4 citrate and 11 hydroxycinnamate derivative prototypes and 5 hydroxycinnamate derivative metabolites in the 40% ethanol fraction of MF (MFE40), the active anti-CD ingredient group of MF. Lipopolysaccharide (LPS)-treated IEC-6 cells were used to investigate the effects of the above components on the proliferation of damaged IEC-6 cells and to verify the molecular mechanism of their regulation on the FAK/PI3K/AKT signaling pathways for the promotion of the proliferation of IEC-6 cells.. A "compound-target-pathway" network was constructed based on network pharmacology analysis, including 20 citrate and hydroxycinnamate derivatives that target 316 core proteins and 36 CD-related pathways, of which PI3K-AKT pathway and focal adhesion were the most enriched pathways. Further cell validation experiments showed that 1 citric acid (CA) compound and 10 hydroxycinnamate derivatives, including 3-O-caffeoylquinic acid (3CQA), 4-O-caffeoylquinic acid (4CQA), 5-O-caffeoylquinic acid (5CQA), caffeic acid (CFA), p-coumaric acid (PCMA), m-coumaric acid (MCMA), ferulic acid (FUA), isoferulic acid (IFUA), 3-hydroxyphenylpropionic acid (3HPPA) and hippuric acid (HPP), could promote the proliferation of IEC-6 cells and inhibit the damage of LPS to IEC-6 cells. Ethyl caffeate (ECFA), a hydroxycinnamic acid derivative, had no effect on promoting the proliferation of IEC-6 cells and was weak in inhibiting the damage of IEC-6 cells caused by LPS. Further mechanistic verification experiments showed that 7 citrate and hydroxycinnamate derivatives (CA, CFA, 3CQA, MCMA, FUA, 3HPPA, and HPP) could upregulate the expression of p-FAK, p-PI3K, and p-AKT proteins. Among them, CA had the better effect on activating the FAK-PI3K-AKT signaling pathway.. Citrate and hydroxycinnamate derivatives in MF can ameliorate LPS-induced intestinal epithelial cell injury to demonstrate potential for Crohn's disease alleviation. This protective effect can be achieved by upregulating FAK/PI3K/AKT pathway. Topics: Citric Acid; Crohn Disease; Epithelial Cells; Fruit; Lipopolysaccharides; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction | 2023 |
Optimization of an Extraction Solvent for Angiotensin-Converting Enzyme Inhibitors from
Topics: Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; Chlorogenic Acid; Chromatography, High Pressure Liquid; Citric Acid; Coumaric Acids; Enzyme Assays; Hibiscus; Humans; Kaempferols; Liquid-Liquid Extraction; Metabolome; Methanol; Peptidyl-Dipeptidase A; Plant Extracts; Quinic Acid; Secondary Metabolism; Solutions; Solvents; Structure-Activity Relationship; Tandem Mass Spectrometry | 2020 |
UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding.
Previously, we found that phenolic content and antioxidant capacity (AOX) in carrots increased with wounding intensity. It was also reported that UV radiation may trigger the phenylpropanoid metabolism in plant tissues. Here, we determined the combined effect of wounding intensity and UV radiation on phenolic compounds, AOX, and the phenylalanine ammonia-lyase (PAL) activity of carrots. Accordingly, phenolic content, AOX, and PAL activity increased in cut carrots with the duration of UVC radiation, whereas whole carrots showed no increase. Carrot pies showed a higher increase compared to slices and shreds. Phenolics, AOX, and PAL activity also increased in cut carrots exposed to UVA or UVB. The major phenolics were chlorogenic acid and its isomers, ferulic acid, and isocoumarin. The type of UV radiation affected phenolic profiles. Chlorogenic acid was induced by all UV radiations but mostly by UVB and UVC, ferulic acid was induced by all UV lights to comparable levels, while isocoumarin and 4,5-diCQA was induced mainly by UVB and UVC compared to UVA. In general, total phenolics correlated linearly with AOX for all treatments. A reactive oxygen species (ROS) mediated hypothetical mechanism explaining the synergistic effect of wounding and different UV radiation stresses on phenolics accumulation in plants is herein proposed. Topics: Antioxidants; Biosynthetic Pathways; Chlorogenic Acid; Cooking; Coumaric Acids; Daucus carota; Isocoumarins; Quinic Acid; Reactive Oxygen Species; Ultraviolet Rays | 2017 |
Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo.
Potential nutraceutical properties of hydrophilic antioxidants in fruits of tomato landraces collected in Andean valleys were characterised. Antioxidant metabolites were measured by HPLC-DAD-MS/MS in mature fruits and their biological activities were assessed by in vitro and in vivo methods. In vitro antioxidant capacities were established by TEAC and FRAP methods. For in vivo biological activities we used a procedure based on Caenorhabditis elegans subjected to thermal stress. In addition, Saccharomyces cerevisiae was also used as a rapid screening system to evaluate tomato antioxidant capacity. All tomato accessions displayed significant differences regarding metabolic composition, biological activity and antioxidant capacity. Metabolite composition was associated with geographical origin and fruit size. Antioxidant activities showed significant association with phenolic compounds, such as caffeoylquinic acids, ferulic acid-O-hexosides and rutin. Combination of in vitro and in vivo methods applied here allowed evaluation of the variability in nutraceutical properties of tomato landraces, which could be applied to other fruits or food products. Topics: Animals; Antioxidants; Caenorhabditis elegans; Chromatography, High Pressure Liquid; Coumaric Acids; Fruit; Quinic Acid; Rutin; Saccharomyces cerevisiae; Solanum lycopersicum; South America; Tandem Mass Spectrometry | 2016 |
[Simultaneous determination of five organic acids in Kudiezi injection by HPLC].
The aim was to develop a high performance liquid chromatography method for simultaneous determination of five organic acids in Kudiezi injection. The Diamonsil C18 column (4.6 mm x 200 mm, 5 microm) was adopted with acetonitrile and water as the mobile phase at a gradient mode program. The flow rate was 1.0 mL min-1 , detection wavelength was 325 nm, and column temperature was 35 degree C. The linear range of monocaffeyltartaric acid, chlorogenic acid, caffeic acid, ferulic acid, and chicoric acid were 0. 64-81.60 (r =0. 999 9),0.09-11. 10 (r =0.999 8) ,0.09-11.30 (r =0. 999 8),0.10-12.80 (r =0.999 9),0.43-55. 50 mg L-1 (r = 0.999 8) , respectively. The average recoveries were 101.8% ,100. 9% ,99. 24% ,99. 83% ,101.9%, respectively, with RSD of less than 2.0%. The developed HPLC method was simple, sensitive and accurate with good repeatability. This work provided helpful information for comprehensive quality control of Kudiezi injection. [Key words] Kudiezi injection; organic acids; content determination; HPLC Topics: Caffeic Acids; Chlorogenic Acid; Chromatography, High Pressure Liquid; Coumaric Acids; Drugs, Chinese Herbal; Quinic Acid; Succinates | 2013 |
Chlorogenic acids from green coffee extract are highly bioavailable in humans.
Chlorogenic acids (CGA) are cinnamic acid derivatives with biological effects mostly related to their antioxidant and antiinflammatory activities. Caffeoylquinic acids (CQA) and dicaffeoylquinic acids (diCQA) are the main CGA found in nature. Because green coffee is a major source of CGA, it has been used for production of nutraceuticals. However, data on the bioavailability of CGA from green coffee in humans are inexistent. The present study evaluated the pharmacokinetic profile and apparent bioavailability of CGA in plasma and urine of 10 healthy adults for 8 h after the consumption of a decaffeinated green coffee extract containing 170 mg of CGA. Three CQA, 3 diCQA, and caffeic, ferulic, isoferulic, and p-coumaric acids were identified in plasma by HPLC-Diode Array Detector-MS after treatment. Over 30% (33.1 +/- 23.1%) of the ingested cinnamic acid moieties were recovered in plasma, including metabolites, with peak levels from 0.5 to 8 h after treatment. CGA and metabolites identified in urine after treatment were 4-CQA, 5-CQA, and sinapic, p-hydroxybenzoic, gallic, vanillic, dihydrocaffeic, caffeic, ferulic, isoferulic, and p-coumaric acids, totaling 5.5 +/- 10.6% urinary recovery of the ingested cinnamic and quinic acid moiteties. This study shows that the major CGA compounds present in green coffee are highly absorbed and metabolized in humans. Topics: Adult; Biological Availability; Caffeic Acids; Caffeine; Chlorogenic Acid; Cinnamates; Coffee; Coumaric Acids; Female; Humans; Male; Middle Aged; Propionates; Quinic Acid; Young Adult | 2008 |
Incorporation of chlorogenic acids in coffee brew melanoidins.
The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the released QA and CA were quantified. For all melanoidin fractions, it was found that more QA than CA was released. QA levels correlated with melanoidin levels, indicating that QA is incorporated in melanoidins. The QA level was correlated with increasing ionic charge of the melanoidin populations, suggesting that QA may contribute to the negative charge and consequently is, most likely, not linked via its carboxyl group. The QA level correlated with the phenolic acid group level, as determined by Folin-Ciocalteu, indicating that QA was incorporated to a similar extent as the polyphenolic moiety from CGA. The QA and CA released from brew fractions by enzymes confirmed the incorporation of intact CGAs. Intact CGAs are proposed to be incorporated in melanoidins upon roasting via CA through mainly nonester linkages. This complex can be written as Mel=CA-QA, in which Mel represents the melanoidin backbone, =CA represents CA nonester-linked to the melanoidin backbone, and -QA represents QA ester-linked to CA. Additionally, a total of 12% of QA was identified in coffee brew, whereas only 6% was reported in the literature so far. The relevance of the additional QA on coffee brew stability is discussed. Topics: Caffeic Acids; Chlorogenic Acid; Chromatography, Ion Exchange; Coffea; Coffee; Coumaric Acids; Hot Temperature; Molecular Weight; Polymers; Quinic Acid; Seeds | 2008 |
Characterization by LC-MS(n) of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans.
LC-MS4 has been used to detect and characterize in green coffee beans 15 quantitatively minor p-coumaric acid-containing chlorogenic acids not previously reported in nature. These comprise 3,4-di-p-coumaroylquinic acid, 3,5-di-p-coumaroylquinic acid, and 4,5-di-p-coumaroylquinic acid (Mr 484); 3-p-coumaroyl-4-caffeoylquinic acid, 3-p-coumaroyl-5-caffeoylquinic acid, 4-p-coumaroyl-5-caffeoylquinic acid, 3-caffeoyl-4-p-coumaroyl-quinic acid, 3-caffeoyl-5-p-coumaroyl-quinic acid; and 4-caffeoyl-5-p-coumaroyl-quinic acid (Mr 500); 3-p-coumaroyl-4-feruloylquinic acid, 3-p-coumaroyl-5-feruloylquinic acid and 4-p-coumaroyl-5-feruloylquinic acid (Mr 514); and 4-dimethoxycinnamoyl-5-p-coumaroylquinic acid and two isomers (Mr 528) for which identities could not be assigned unequivocally. Structures have been assigned on the basis of LC-MS4 patterns of fragmentation. Forty-five chlorogenic acids have now been characterized in green Robusta coffee beans. Topics: Chlorogenic Acid; Chromatography, Liquid; Coffea; Coumaric Acids; Mass Spectrometry; Propionates; Quinic Acid; Seeds | 2006 |
Changes in broccoli (Brassica oleracea L. Var. italica) health-promoting compounds with inflorescence development.
Changes in phenolic compounds, total glucosinolates, and vitamin C were monitored during the productive period along five inflorescence development stages of three broccoli commercial cultivars (Marathon, Monterrey, and Vencedor). In an attempt to identify differences due to agronomic factors, broccoli cultivars were grown under different sulfur fertilization with poor (15 kg/ha) and rich (150 kg/ha) rates. Phenolic compounds and vitamin C concentrations showed, in all broccoli cultivars, a rising trend from the first stage until the over-maturity stage, both for rich and poor sulfur fertilization. Significant differences were detected in the first two stages between rich and poor sulfur fertilization in total glucosinolates for all broccoli cultivars, where the highest concentration was always observed in the second development stage (used as minimally processed product) during poor fertilization. With regard to the last three stages, the glucosinolate concentration in the poor sulfur fertilization started to slope down until the over-maturity stage. Where rich sulfur fertilization is concerned, the highest level was reached during the third stage (used as minimally processed product also), and after that, glucosinolate concentration decreased until the fifth stage. Topics: Ascorbic Acid; Brassica; Chromatography, High Pressure Liquid; Coumaric Acids; Fertilizers; Flavonoids; Glucosinolates; Health Promotion; Phenols; Quinic Acid; Spectrum Analysis; Sulfur | 2003 |