chlorogenic-acid and epigallocatechin-gallate

chlorogenic-acid has been researched along with epigallocatechin-gallate* in 2 studies

Other Studies

2 other study(ies) available for chlorogenic-acid and epigallocatechin-gallate

ArticleYear
Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions.
    Journal of agricultural and food chemistry, 2013, Jan-30, Volume: 61, Issue:4

    5-Caffeoylquinic acid (5-CQA) is generally referred to as chlorogenic acid and exhibits various biological activities such as antioxidant activity and porcine pancreas α-amylase inhibitory activities. 5-CQA may be useful as an antioxidant for food and to prevent diabetes and obesity. The degradation of 5-CQA and caffeic acid (CA) in an aqueous solution at 37 °C and pH 5.0-9.0 was studied. The degradation of 5-CQA and CA, demonstrating time and pH dependence (i.e., the rate constant, k, was higher at higher pH), was satisfactorily described by the Weibull equation. The stability of 5-CQA at pH 7.4 and 9.0 was improved by adding (-)-epigallocatechin gallate (EGCG) and ascorbic acid (AA). Moreover, the degradation of 5-CQA in the presence of EGCG or AA could be described by the Weibull equation. The k value in the presence of EGCG or AA was dependent on their concentration.

    Topics: Ascorbic Acid; Caffeic Acids; Catechin; Chlorogenic Acid; Drug Stability; Hydrogen-Ion Concentration; Kinetics; Quinic Acid

2013
Interaction of dicaffeoylquinic derivatives with peroxynitrite and other reactive nitrogen species.
    Archives of biochemistry and biophysics, 2008, Jul-01, Volume: 475, Issue:1

    Plant phenolic antioxidants, among them catechins and hydroxycinnamoyl conjugates, constitute a well defined class of inhibitors of reactive nitrogen species (RNS). To gain deeper insight in this field, we examined the effects of 3,5-di-O-caffeoylquinic acid (DCA), its methyl ester (DCE) and epigallocatechin gallate (EGCG) in nitrative and oxidative processes. These compounds were found to be strong inhibitors of the nitration of tyrosine residues induced by ONOO- in bovine seroalbumin, with their IC50 values (10-40 microM) notably decreasing in the presence of bicarbonate. When studied on the intracellular protein tyrosine nitration induced by ONOO- in cultured murine fibroblasts as well as that induced by phorbol ester (PMA) in nitrite-supplemented human neutrophils, all three phenolics were also effective (100% and over 75% inhibition for fibroblasts and neutrophils, respectively, at 25 microM). This ability seems to be due to a direct interaction with ONOO- or with the species generated by leukocytes. The possible interference with the production of NO was also studied: both DCA and EGCG inhibited nitrite production in LPS-stimulated macrophages by 24% and 40%, respectively, and the expression of nitric oxide synthase-2 (NOS-2), as well. DCA and EGCG reduced by 52% and 59%, respectively, the NF-kappaB transcriptional activity. In contrast, DCE did not show any effect. The assayed phenolics exert varying degrees of protection against the chemical modifications induced by RNS depending not only on the hydroxyl pattern, but also on the presence of bicarbonate.

    Topics: Animals; Bicarbonates; Catechin; Cattle; Fibroblasts; Humans; Inhibitory Concentration 50; Lipopolysaccharides; Macrophages; Mice; Neutrophils; Nitrates; Nitric Oxide Synthase Type II; Nitrites; Oxidation-Reduction; Peroxynitrous Acid; Quinic Acid; Reactive Nitrogen Species; Serum Albumin, Bovine; Stimulation, Chemical; Tetradecanoylphorbol Acetate; Tyrosine

2008