chloroform has been researched along with sulfasalazine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Caron, G; Ermondi, G | 1 |
Bianucci, AM; Carli, N; Coi, A; Imbriani, M; Massarelli, I; Saraceno, M | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
5 other study(ies) available for chloroform and sulfasalazine
Article | Year |
---|---|
Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).
Topics: 1-Octanol; Alkanes; Hydrogen-Ion Concentration; Least-Squares Analysis; Mathematics; Models, Chemical; Models, Molecular; Solvents; Water | 2005 |
Development of QSAR models for predicting hepatocarcinogenic toxicity of chemicals.
Topics: Algorithms; Animals; Artificial Intelligence; Carcinogenicity Tests; Carcinogens; Databases, Factual; Liver; Models, Chemical; Quantitative Structure-Activity Relationship | 2009 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |