Page last updated: 2024-08-17

chloramphenicol and molybdenum

chloramphenicol has been researched along with molybdenum in 16 studies

Research

Studies (16)

TimeframeStudies, this research(%)All Research%
pre-19909 (56.25)18.7374
1990's1 (6.25)18.2507
2000's2 (12.50)29.6817
2010's3 (18.75)24.3611
2020's1 (6.25)2.80

Authors

AuthorsStudies
DeMoss, JA; Scott, RH; Sperl, GT1
DeMoss, JA; Scott, RH1
Elliott, BB; Mortenson, LE1
DeMoss, JA; Sperl, GT1
Brill, WJ; Imperial, J; Ludden, PW; Shah, VK; Ugalde, RA1
Engelberg, H; Soudry, E1
Brill, WJ; Nagatani, HH1
DeMoss, JA; Lester, RL1
Brill, WJ; Pienkos, PT1
Gollan, U; Klipp, W; Müller, A; Schneider, K; Schüddekopf, K1
Babarro, JM; de Zwaan, A1
Babarro, JM; Cattani, O; de Zwaan, A; Monari, M1
Amyot, M; Barkay, T; Hamelin, S; Planas, D; Wang, Y1
Chen, M; Jiao, K; Luo, S; Yang, R; Yang, T; Zhao, J1
Chen, H; Ge, T; Jiao, K; Li, W; Wang, J; Yang, T1
Duan, N; Lin, X; Tong, X; Wang, Z; Wu, S1

Other Studies

16 other study(ies) available for chloramphenicol and molybdenum

ArticleYear
In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli.
    Journal of bacteriology, 1979, Volume: 137, Issue:2

    Topics: Aldehyde Oxidoreductases; Bacterial Proteins; Cell-Free System; Chloramphenicol; Enzyme Activation; Escherichia coli; Metalloproteins; Molybdenum; Nitrate Reductases; Tungsten

1979
Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Journal of bacteriology, 1976, Volume: 126, Issue:1

    Topics: Aldehyde Oxidoreductases; Chloramphenicol; Cytochromes; Electron Transport; Enzyme Activation; Enzyme Precursors; Escherichia coli; Formates; Molybdenum; Multienzyme Complexes; Nitrate Reductases; Nitrates; Tungsten

1976
Regulation of molybdate transport by Clostridium pasteurianum.
    Journal of bacteriology, 1976, Volume: 127, Issue:2

    Topics: Acetylene; Ammonia; Biological Transport, Active; Carbamyl Phosphate; Chloramphenicol; Clostridium; Molybdenum; Nitrogen Fixation; Nitrogenase; Oxidation-Reduction

1976
chlD gene function in molybdate activation of nitrate reductase.
    Journal of bacteriology, 1975, Volume: 122, Issue:3

    Topics: Cell-Free System; Chloramphenicol; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Escherichia coli; Genes; Molybdenum; Mutation; Nitrate Reductases; Radioisotopes; Tungsten

1975
In vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
    Proceedings of the National Academy of Sciences of the United States of America, 1986, Volume: 83, Issue:6

    Topics: Acetylene; Adenosine Triphosphate; Azotobacter; Bacterial Proteins; Cell-Free System; Chloramphenicol; Electron Spin Resonance Spectroscopy; Enzyme Activation; Ferredoxins; Genes, Bacterial; Genetic Complementation Test; Klebsiella pneumoniae; Molybdenum; Molybdoferredoxin; Nitrogen Fixation; Nitrogenase; Operon; Protein Processing, Post-Translational; Tungsten; Tungsten Compounds; Vanadates; Vanadium

1986
Ribonucleic acid bacteriophage release: requirement for host-controlled protein synthesis.
    Journal of virology, 1971, Volume: 8, Issue:3

    Topics: Bacterial Proteins; Chloramphenicol; Coliphages; Drug Resistance, Microbial; Escherichia coli; Genetics, Microbial; Leucine; Lysogeny; Microscopy, Electron; Molybdenum; Mutation; Quaternary Ammonium Compounds; Rifampin; RNA Nucleotidyltransferases; Staining and Labeling; Temperature; Time Factors; Tritium

1971
Nitrogenase V. The effect of Mo, W and V on the synthesis of nitrogenase components in Azotobacter vinelandii.
    Biochimica et biophysica acta, 1974, Aug-07, Volume: 362, Issue:1

    Topics: Azotobacter; Chloramphenicol; Enzyme Activation; Enzyme Repression; Molybdenum; Nitrogenase; Time Factors; Transcription, Genetic; Tungsten; Vanadium

1974
Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli.
    Journal of bacteriology, 1971, Volume: 105, Issue:3

    Topics: Chloramphenicol; Colorimetry; Culture Media; Cytochromes; Electron Transport; Escherichia coli; Formates; Glucose; Hydrogen; Molybdenum; Nitrates; Nitrites; Nitrogen; Oxidation-Reduction; Oxidoreductases; Selenium; Spectrophotometry

1971
Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii.
    Journal of bacteriology, 1981, Volume: 145, Issue:2

    Topics: Ammonia; Azotobacter; Biological Transport; Chloramphenicol; Klebsiella pneumoniae; Metalloproteins; Molecular Weight; Molybdenum; Nitrogenase; Time Factors; Tungsten

1981
Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus.
    European journal of biochemistry, 1993, Jul-01, Volume: 215, Issue:1

    Topics: Chloramphenicol; Electron Spin Resonance Spectroscopy; Ethane; Iron; Molybdenum; Molybdoferredoxin; Mutation; Nitrogenase; Rhodobacter capsulatus

1993
Factors involved in the (near) anoxic survival time of Cerastoderma edule: associated bacteria vs. endogenous fuel.
    Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2001, Volume: 128, Issue:3

    Topics: Alanine; Animals; Anti-Bacterial Agents; Aspartic Acid; Bacteria; Chloramphenicol; Glucose; Glycogen; Hydrogen-Ion Concentration; Lactic Acid; Mollusca; Molybdenum; Neomycin; Oxygen; Penicillin G; Polymyxin B; Sulfides; Survival Rate

2001
Anoxic survival potential of bivalves: (arte)facts.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2002, Volume: 131, Issue:3

    Topics: Adaptation, Physiological; Animals; Anti-Bacterial Agents; Bivalvia; Chloramphenicol; Ecosystem; Hypoxia; Molybdenum; Perfusion; Polymyxins; Seawater; Sulfates; Sulfides; Survival Rate

2002
Methanogens: principal methylators of mercury in lake periphyton.
    Environmental science & technology, 2011, Sep-15, Volume: 45, Issue:18

    Topics: Alkanesulfonic Acids; Anti-Bacterial Agents; Biofilms; Chloramphenicol; Diuron; Euryarchaeota; Herbicides; Lakes; Mercury; Methylation; Methylmercury Compounds; Molybdenum; RNA, Archaeal; RNA, Ribosomal, 16S; Sequence Analysis, RNA; Water Microbiology; Water Pollutants, Chemical

2011
Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline.
    Talanta, 2015, Volume: 131

    Topics: Aniline Compounds; Catalysis; Chloramphenicol; Disulfides; Electrochemical Techniques; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Molybdenum; Nanocomposites; Nanostructures; Surface Properties; Ultrasonics

2015
Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite.
    Talanta, 2015, Nov-01, Volume: 144

    Topics: Aniline Compounds; Chloramphenicol; Disulfides; Electrochemistry; Environmental Pollutants; Honey; Limit of Detection; Molybdenum; Nanocomposites; Reproducibility of Results

2015
Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products.
    ACS sensors, 2022, 12-23, Volume: 7, Issue:12

    Topics: Anti-Bacterial Agents; Biosensing Techniques; Carbon; Chloramphenicol; Ecosystem; Humans; Microfluidics; Molybdenum; Oxytetracycline

2022