Page last updated: 2024-08-25

chitosan and 1-butyl-3-methylimidazolium tetrafluoroborate

chitosan has been researched along with 1-butyl-3-methylimidazolium tetrafluoroborate in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's4 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Hu, J; Li, J; Lu, X; Wang, Z; Yao, X1
Compton, RG; Flechsig, GU; Long, JS; Silvester, DS; Surkus, AE; Wildgoose, GG1
Gao, R; Qiao, L; Zheng, J1
Li, C; Ma, M; Ma, Y; Wang, X; Zhan, G1
Yang, G; Zeng, B; Zhao, F1
Kawashima, Y; Ogawa, N; Takahashi, C; Yamamoto, H1

Other Studies

6 other study(ies) available for chitosan and 1-butyl-3-methylimidazolium tetrafluoroborate

ArticleYear
Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin.
    Biomacromolecules, 2006, Volume: 7, Issue:3

    Topics: Biocompatible Materials; Borates; Carbon; Catalysis; Chitosan; Electrochemistry; Hemoglobins; Imidazoles; Ions; Oxygen; Spectrophotometry; Temperature; Thermogravimetry; Trichloroacetic Acid; Ultraviolet Rays

2006
Direct electrochemistry of horseradish peroxidase immobilized in a chitosan-[C4mim][BF4] film: determination of electrode kinetic parameters.
    Bioelectrochemistry (Amsterdam, Netherlands), 2008, Volume: 74, Issue:1

    Topics: Biosensing Techniques; Borates; Chitosan; Electrochemistry; Electrodes; Enzymes, Immobilized; Horseradish Peroxidase; Hydrogen-Ion Concentration; Imidazoles; Ionic Liquids; Kinetics; Oxidation-Reduction; Thermodynamics

2008
Direct electrochemistry of hemoglobin immobilized on hydrophilic ionic liquid-chitosan-ZrO2 nanoparticles composite film with carbon ionic liquid electrode as the platform.
    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 2010, Volume: 26, Issue:11

    Topics: Carbon; Chitosan; Electrochemistry; Electrodes; Hemoglobins; Imidazoles; Ionic Liquids; Membranes, Artificial; Nanoparticles; Particle Size; Surface Properties; Trichloroacetic Acid; Zirconium

2010
Direct electron transfer of hemoglobin in a biocompatible electrochemical system based on zirconium dioxide nanotubes and ionic liquid.
    Bioelectrochemistry (Amsterdam, Netherlands), 2012, Volume: 84

    Topics: Animals; Biosensing Techniques; Catalysis; Cattle; Chitosan; Coated Materials, Biocompatible; Electrochemistry; Electron Transport; Hemoglobins; Hydrogen-Ion Concentration; Imidazoles; Immobilized Proteins; Ionic Liquids; Nanotubes; Nitrites; Zirconium

2012
Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine.
    Talanta, 2014, Volume: 127

    Topics: Caffeine; Chitosan; Electrochemical Techniques; Electrodes; Gold; Graphite; Imidazoles; Ionic Liquids; Metal Nanoparticles; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Theophylline

2014
Observation of antibacterial effect of biodegradable polymeric nanoparticles on Staphylococcus epidermidis biofilm using FE-SEM with an ionic liquid.
    Microscopy (Oxford, England), 2015, Volume: 64, Issue:3

    Topics: Anti-Bacterial Agents; Biofilms; Chitosan; Clarithromycin; Drug Carriers; Imidazoles; Ionic Liquids; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Nanoparticles; Polyesters; Polyglycolic Acid; Polymers; Staphylococcus epidermidis

2015