chir-99021 has been researched along with pyrazolanthrone* in 2 studies
2 other study(ies) available for chir-99021 and pyrazolanthrone
Article | Year |
---|---|
Small molecular compounds efficiently convert human fibroblasts directly into neurons.
No effective treatment is currently available for neurodegenerative diseases, and existing pharmacotherapy is inconsistent with severe side effects. Cell replacement therapy is promising for neurodegenerative disease treatment, and the induction of neurons is an unmet need for such therapy. The present study investigated the potential of a combined medium composed of conditioned medium and eight small molecular compounds in reprogramming human foreskin fibroblasts (HFFs) into neurons. HFFs were cultured from foreskin and then induced by small molecules to generate neurons. The results demonstrated that the conditioned medium containing forskolin, RepSox, SP600125, CHIR99021, Go6983, Y‑27632, IXS9 and I‑BET151 effectively induced human fibroblasts to change into neurons in vitro. Following a 30‑day induction, the cells exhibited neuronal properties as determined by morphological and phenotypical alterations. The induced cells exhibited expression of neuronal markers, including class III β‑tubulin, microtubule‑associated protein 2, vesicular glutamate transporter 1 and γ‑aminobutyric acid, accompanied by increased expression of neuronal transcription factors, including neuronal differentiation 1 and achaete‑scute family bHLH transcription factor 1, and decreased expression levels of fibroblast‑specific genes. Furthermore, these cells also exhibited electrophysiological properties of neurons. Notably, the course of cell morphological alterations demonstrated the differentiation of fibroblasts into neurons. The present study provided a novel combination of existing small molecular compounds that efficiently reprogramed human fibroblasts into neurons. Topics: Amides; Anthracenes; Cell Differentiation; Cells, Cultured; Cellular Reprogramming; Cellular Reprogramming Techniques; Colforsin; Culture Media, Conditioned; Fibroblasts; Foreskin; Humans; Indoles; Male; Maleimides; Nerve Tissue Proteins; Neurodegenerative Diseases; Neurons; Pyrazoles; Pyridines; Pyrimidines; Transcription Factors | 2020 |
Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms.
Recent evidences suggest that the activity of glycogen synthase kinase-3 (GSK3) contributes to the tumorigenic potential of pancreatic cancer cells through modulation of cell proliferation and survival. However, further investigations are needed to identify GSK3-dependent mechanisms involved in the control of pancreatic cancer cell proliferation and survival. This study was undertaken to provide further support for a role of GSK3 in pancreatic cancer cell growth as well as to identify new cellular and molecular mechanisms involved. Herein, we demonstrate that prolonged inhibition of GSK3 triggers an apoptotic response only in human pancreatic cancer cells but not in human non-transformed pancreatic epithelial cells. We show that prolonged inhibition of GSK3 activity increases Bim messenger RNA and protein expressions. Moreover, we provide evidence that activation of the c-jun N-terminal kinase (JNK) pathway is necessary for the GSK3 inhibition-mediated increase in Bim expression and apoptotic response. Finally, we demonstrate that concomitant inhibition of GSK3 potentiates the death ligand-induced apoptotic response in pancreatic cancer cells but not in non-transformed pancreatic epithelial cells and that this effect also requires JNK activity. Considering that different approaches leading to stimulation of death receptor signaling are under clinical trials for treatment of unresectable or metastatic pancreatic cancer, inhibition of GSK3 could represent an attractive new avenue to improve their effectiveness. Topics: Anthracenes; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Cell Line, Tumor; Cell Proliferation; Cell Survival; Glycogen Synthase Kinase 3; Humans; Indoles; JNK Mitogen-Activated Protein Kinases; Maleimides; MAP Kinase Signaling System; Membrane Proteins; Pancreas; Pancreatic Neoplasms; Phosphorylation; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; Receptors, Death Domain; RNA, Messenger | 2012 |